222
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Non-ionic surfactant vesicles as a carrier system for dermal delivery of (+)-Catechin and their antioxidant effects

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 310-322 | Received 14 Jul 2020, Accepted 09 Oct 2020, Published online: 27 Oct 2020
 

Abstract

Numerous skin disorders and diseases are related to oxidative stress. The application of an antioxidant, serving as a strong defense agent against oxidation, is of great interest in dermatology yet remains challenging for delivery. This paper aimed to develop a niosome carrier system to deliver the antioxidant (+) Catechin into the skin. (+) Catechin-loaded niosomes were prepared using film hydration technique and the physicochemical properties of drug-loaded niosomes were characterised and investigated by a series of in vitro and ex vivo studies. The optimised formulation displayed an acceptable size in nanoscale (204 nm), high drug entrapment efficiency (49%) and amorphous state of drug in niosomes. It was found that (+) Catechin-loaded niosomes could effectively prolong the drug release. Drug deposition in the viable layers of human skin was significantly enhanced when niosomal carriers were applied (p < 0.05). Compared to the pure drug, the niosomal formulation had a greater protective effect on the human skin fibroblasts (Fbs). This is consistent with the observation of internalisation of niosomes by Fbs which was concentration-, time- and temperature-dependent, via an energy-dependent process of endocytosis. The research highlighted that niosomes are potential topical carriers for dermal delivery of antioxidants in skin-care and pharmaceutical products.

Disclosure statement

The authors have no conflicts of interest to disclose.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.