217
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Efficient drug delivery by novel cell-penetrating peptide derived from Midkine, with two heparin binding sites braced by a length-specific helix

, , , &
Pages 326-333 | Received 02 Jun 2021, Accepted 24 Oct 2021, Published online: 09 Nov 2021
 

Abstract

Cell-penetrating peptides (CPPs) have been regarded as potential drug carriers for cancer therapy. However, most well-studied CPPs fail to deliver exogenous drugs efficiently and selectively. In this study, a tumour-targeted CPP with high efficiency derived from heparin-binding domain (HBD) of Midkine (named HMD) was discovered. HMD exhibited higher delivery efficiency than classic CPPs (TAT and R9) and manifested selectivity in tumour cells. Normally, the positive charge is the key factor for the transmembrane activity of CPPs such as TAT and R9. Here, the length of α-helix inside CPP was found also important for in the recognition of heparan sulphate proteoglycans (HSPGs). Subsequently, the introduction of HMD enhanced the inhibitory effect of Momordica antiviral protein of 30 kDa (MAP30) on tumour cells, resulting in a 6.07-fold and 5.42-fold increase in HeLa cells and MGC80-3 cells respectively without enhanced cytotoxicity in normal cells. These results show that HMD possesses high efficiency and good tumour specificity and can be utilised as a promising agent for the tumour-targeted delivery of drug. This study is also a supplement to the existing theories about the biological activities of the α-helix in CPPs.

Disclosure statement

The authors declare that they have no conflict of interest regarding the conduct or outcomes of this study.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [Grant No. 81571795].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.