164
Views
2
CrossRef citations to date
0
Altmetric
Articles

Multi-component free surface flows and rotating devices in the context of minerals processing

, , &
Pages 93-107 | Received 06 Jan 2009, Accepted 07 Jan 2009, Published online: 16 Apr 2009
 

Abstract

In analysing the treatment and transport of slurries (i.e. particle loaded fluids) in minerals processing, it is common to come up against significant challenges from the perspective of the computational fluid dynamics (CFD) modelling, especially in trying to optimise their transport – to maintain uniformity of particle distribution or minimise their abrasive effects. These flows are essentially multi-component, non-Newtonian and their context is such that they may well involve complex free surfaces and also be in rotating equipment, as well, of course, involving rather complex geometrical configurations. Here we describe CFD models of some key slurry transport processes using a finite volume unstructured mesh-based code using a range of numerical procedures – algebraic slip models for capturing the particulate behaviour, scalar equation algorithms for the free surfaces and source-sink algorithms for the flow through rotating machinery. Applications of the above phenomena coupled are described together with some of the challenges in configuring CFD models.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.