346
Views
8
CrossRef citations to date
0
Altmetric
Articles

Aerodynamic force evaluation for ice shedding phenomenon using vortex in cell scheme, penalisation and level set approaches

, &
Pages 435-450 | Received 15 Jun 2012, Accepted 02 Oct 2012, Published online: 13 Dec 2012
 

Abstract

In this work, we propose a formulation to evaluate aerodynamic forces for flow solutions based on Cartesian grids, penalisation and level set functions. The formulation enables the evaluation of forces on closed bodies moving at different velocities. The use of Cartesian grids bypasses the meshing issues, and penalisation is an efficient alternative to explicitly impose boundary conditions so that the body fitted meshes can be avoided. Penalisation enables ice shedding simulations that take into account ice piece effects on the flow. Level set functions describe the geometry in a non-parametric way so that geometrical and topological changes resulting from physics, and particularly shed ice pieces, are straightforward to follow. The results obtained with the present force formulation are validated against other numerical formulations for circular and square cylinder in laminar flow. The capabilities of the proposed formulation are demonstrated on ice trajectory calculations for highly separated flow behind a bluff body, representative of inflight aircraft ice shedding.

Acknowledgements

This work has been supported by the French National Research Agency (ANR) through COSINUS program (project CARPENTIER no. ANR-08-COSI-002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.