225
Views
0
CrossRef citations to date
0
Altmetric
Articles

An Investigation of Uncertainty Propagation in Non-equilibrium Flows

Pages 294-318 | Received 23 Nov 2021, Accepted 11 Jul 2022, Published online: 02 Aug 2022
 

ABSTRACT

Considerable uncertainties can exist between the field solutions of coarse-grained fluid models and the real-world flow physics. To study the emergence, propagation, and evolution of uncertainties poses great opportunities and challenges to develop both sound theories and reliable numerical methods. In this paper, we study the stochastic behaviour of multi-scale gaseous flows from molecular to hydrodynamic level, especially focussing on the non-equilibrium effects. The theoretical analysis is presented based on the gas kinetic model and its upscaling macroscopic system with random inputs. A newly developed stochastic kinetic scheme is employed to conduct numerical simulation of multi-scale and non-equilibrium flows. Different kinds of uncertainties are involved in the gas evolutionary processes. New physical observations, such as the synchronous travel pattern between mean fields and uncertainties, sensitivity of different orders of uncertainties and the influence of boundary effects from continuum to rarefied regimes, are identified and analysed.

Disclosure statement

No potential conflict of interest was reported by the author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.