185
Views
1
CrossRef citations to date
0
Altmetric
Dimension Reduction

Theoretical Analysis of LLE Based on Its Weighting Step

Pages 380-393 | Received 01 Feb 2010, Published online: 14 Jun 2012
 

Abstract

The local linear embedding algorithm (LLE) is a widely used nonlinear dimension-reducing algorithm. However, its large sample properties are still not well understood. In this article, we present new theoretical results for LLE based on the way that LLE computes its weight vectors. We show that LLE’s weight vectors are computed from the high-dimensional neighborhoods and are thus highly sensitive to noise. We also demonstrate that in some cases LLE’s output converges to a linear projection of the high-dimensional input. We prove that for a version of LLE that uses the low-dimensional neighborhood representation (LDR-LLE), the weights are robust against noise. We also prove that for conformally embedded manifold, the preimage of the input points achieves a low value of the LDR-LLE objective function, and that close-by points in the input are mapped to close-by points in the output. Finally, we prove that asymptotically LDR-LLE preserves the order of the points of a one-dimensional manifold. The Matlab code and all datasets in the presented examples are available as online supplements.

Notes

http://www.cs.toronto.edu/roweis/lle/. The changes in the Matlab function eigs were taken into account.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.