Publication Cover
Endothelium
Journal of Endothelial Cell Research
Volume 15, 2008 - Issue 1-2
5
Views
6
CrossRef citations to date
0
Altmetric
Regular Articles

Effects of Chronic Nitric Oxide Synthase Inhibition on Endothelium-Dependent and -Independent Relaxation in Arteries that Perfuse Skeletal Muscle of Swine

, , &
Pages 17-31 | Received 30 Aug 2007, Accepted 28 Mar 2008, Published online: 13 Jul 2009
 

Abstract

The purpose of this investigation was to test the hypothesis that chronic NG-nitro-l-arginine methyl ester (l-NAME) treatment produces differential effects on conduit artery and resistance arteriole relaxation responses to endothelium-dependent and -independent vasodilators in arteries that perfuse skeletal muscle of swine. To test this hypothesis, conduit skeletal muscle arteries and second-order skeletal muscle (2A) arterioles were harvested from 14 Yucatan swine that were chronically administered l-NAME and from 16 controls. In vitro assessments of vasorelaxation to increasing doses of acetylcholine (ACH), bradykinin (BK), and sodium nitroprusside (SNP) were performed in both conduit and 2A arterioles. l-NAME treatment produced a significant reduction in both BK and ACH relaxation responses in the conduit arteries. In contrast, the relaxation response and/or sensitivity to SNP were significantly greater in the intact, but not denuded, conduit arterial rings from chronically l-NAME–treated swine. There were no significant effects of chronic l-NAME treatment on vasodilation of skeletal muscle arterioles. These findings suggest (1) that unlike arterioles, skeletal muscle conduit arteries do not functionally compensate for a lack of NO through the upregulation of alternative vasodilator pathways; (2) that the greater relaxation response in conduit arteries of chronically l-NAME–treated swine to SNP can be explained by alterations to the endothelium.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.