271
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

External validation of EPIWIN biodegradation models

Pages 135-148 | Received 13 May 2004, Accepted 25 Aug 2004, Published online: 01 Feb 2007
 

Abstract

The BIOWIN biodegradation models were evaluated for their suitability for regulatory purposes. BIOWIN includes the linear and non-linear BIODEG and MITI models for estimating the probability of rapid aerobic biodegradation and an expert survey model for primary and ultimate biodegradation estimation. Experimental biodegradation data for 110 newly notified substances were compared with the estimations of the different models. The models were applied separately and in combinations to determine which model(s) showed the best performance. The results of this study were compared with the results of other validation studies and other biodegradation models. The BIOWIN models predict not-readily biodegradable substances with high accuracy in contrast to ready biodegradability. In view of the high environmental concern of persistent chemicals and in view of the large number of not-readily biodegradable chemicals compared to the readily ones, a model is preferred that gives a minimum of false positives without a corresponding high percentage false negatives. A combination of the BIOWIN models (BIOWIN2 or BIOWIN6) showed the highest predictive value for not-readily biodegradability. However, the highest score for overall predictivity with lowest percentage false predictions was achieved by applying BIOWIN3 (pass level 2.75) and BIOWIN6.

Acknowledgement

The authors thank their RIVM/SEC colleague Dick Sijm for his valuable comments on the manuscript.

Notes

Presented at the 11th International Workshop on Quantitative Structure–Activity Relationships in the Human Health and Environmental Sciences (QSAR2004), 9–13 May 2004, Liverpool, England.

Additional information

Notes on contributors

E.M. Hulzebos

Presented at the 11th International Workshop on Quantitative Structure–Activity Relationships in the Human Health and Environmental Sciences (QSAR2004), 9–13 May 2004, Liverpool, England.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.