177
Views
13
CrossRef citations to date
0
Altmetric
Articles

QSAR model for prediction of the therapeutic potency of N-benzylpiperidine derivatives as AChE inhibitors

, &
Pages 471-489 | Received 15 Feb 2017, Accepted 14 May 2017, Published online: 14 Jun 2017
 

Abstract

A new family of AChE inhibitors, N-benzylpiperidines, showed exceptional efficacy in vitro and in vivo, minimal side effects and high selectivity for acetylcholinesterase (AChE). Three regression methods were chosen in this work to develop robust predictive models, namely multiple linear regression (MLR), genetic function approximation (GFA) and multilayer perceptron network (MLP). Ten descriptors were selected for a dataset of 99 molecules, using a genetic algorithm. The best results were obtained for MLP with a 10-6-1 artificial neural network model trained with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. Statistical prediction for MLR and GFA were r2 = 0.882 and r2 = 0.875, respectively. Because internal and external validation strategies play an important role, we adopted all available validation strategies to check the robustness of the models. All criteria used to validate these models revealed the superiority of the GFA model. Therefore, the models developed in this study provide an excellent prediction of the inhibitory concentration of a new family of AChE inhibitors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.