115
Views
3
CrossRef citations to date
0
Altmetric
Articles

Accurate prediction of Gram-negative bacterial secreted protein types by fusing multiple statistical features from PSI-BLAST profile

, &
Pages 469-481 | Received 22 Jan 2018, Accepted 27 Mar 2018, Published online: 24 Apr 2018
 

Abstract

Gram-negative bacterial secreted proteins play different roles in invaded eukaryotic cells and cause various diseases. Prediction of Gram-negative bacterial secreted protein types is a meaningful and challenging task. In this paper, we develop a multiple statistical features extraction model based on the dipeptide composition (DPC) descriptor and the detrended moving-average auto-cross-correlation analysis (DMACA) descriptor by PSI-BLAST profile. A 610-dimensional feature vector was constructed on the training set, and the feature extraction model was denoted DPC-DMACA-PSSM. A support vector machine was then selected as a classifier, and the bias-free jackknife test method was used for evaluating the accuracy. Our predictor achieves favourable performance for overall accuracy on the test set and also outperforms the other published approaches. The results show that our approach offers a reliable tool for the identification of Gram-negative bacterial secreted protein types.

Acknowledgements

The authors would like to thank the anonymous reviewers and editor for their helpful comments on our manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.