246
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational screening of natural and natural-like compounds to identify novel ligands for sigma-2 receptor

ORCID Icon, ORCID Icon &
Pages 837-856 | Received 30 Jun 2020, Accepted 02 Sep 2020, Published online: 26 Oct 2020
 

ABSTRACT

Sigma-2 (σ2) receptor is a transmembrane protein shown to be linked with neurodegenerative diseases and cancer development. Thus, it emerges as a potential biological target for the advancement of anticancer and anti-Alzheimer’s agents. The current study was aimed to identify potential σ2 receptor ligands using integrated computational approaches including homology modelling, combined pharmacophore- and docking-based virtual screening, and molecular dynamics (MD) simulation. Pharmacophore-based screening was conducted against a database composed of 20,523 small natural and natural-like products. In total, 1200 structures were found to satisfy the required pharmacophore features and were then exposed to docking-based screening against the generated homology model of σ2 receptor. On the basis of the pharmacophore fit scores, docking scores, and mechanism of binding interaction, 20 potential hits were retained. Five promising candidates were selected (SR84, SR823, SR300, SR413, and SR530) on the basis of their binding score and interaction. Further, in silico ADMET profiling of these compounds showed that the selected compounds possess favourable ADME properties with low toxicity risk. The mechanism of interaction of these compounds with σ2 receptor as well as their binding stability were characterized by MD simulation.

Acknowledgements

The authors would like to thank Prince Sattam Bin Abdulaziz University for providing the computational resources to conduct this research.

Disclosure statement

The authors declare no conflict of interests.

Supplementary material

Supplemental data for this article can be accessed here.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.