284
Views
0
CrossRef citations to date
0
Altmetric
Research Article

QSPR modelling for investigation of different properties of aminoglycoside-derived polymers using 2D descriptors

& ORCID Icon
Pages 595-614 | Received 28 Mar 2021, Accepted 02 Jun 2021, Published online: 21 Jun 2021
 

ABSTRACT

The quantitative structure‐property relationship (QSPR) method is commonly used to predict different physicochemical characteristics of interest of chemical compounds with an objective to accelerate the process of design and development of novel chemical compounds in the biotechnology and healthcare industries. In the present report, we have employed a QSPR approach to predict the different properties of the aminoglycoside-derived polymers (i.e. polymer DNA binding and aminoglycoside-derived polymers mediated transgene expression). The final QSPR models were obtained using the partial least squares (PLS) regression approach using only specific categories of two-dimensional descriptors and subsequently evaluated considering different internationally accepted validation metrics. The proposed models are robust and non-random, demonstrating excellent predictive ability using test set compounds. We have also developed different kinds of consensus models using several validated individual models to improve the prediction quality for external set compounds. The present findings provide new insight for exploring the design of an aminoglycoside-derived polymer library based on different identified physicochemical properties as well as predict their property before their synthesis.

Acknowledgements

PMK thanks to National Institute of Pharmaceutical Education and Research Kolkata, the Ministry of Chemicals & Fertilizers, Department of Pharmaceuticals, Government of India for providing financial assistance in the form of a fellowship.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed at: https://doi.org/10.1080/1062936X.2021.1939150

Additional information

Funding

This work was supported by the Ministry of Chemicals and Fertilizers, Govt. of India.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.