1,149
Views
197
CrossRef citations to date
0
Altmetric
Original Articles

Toxic Metals in the Environment: Thermodynamic Considerations for Possible Immobilization Strategies for Pb, Cd, As, and Hg

, , &
Pages 495-604 | Published online: 10 Aug 2010
 

Abstract

The contamination of soils by toxic metals is a widespread, serious problem that demands immediate action either by removal or immobilization, which is defined as a process which puts the metal into a chemical form, probably as a mineral, which will be inert and highly insoluble under conditions that will exist in the soil. If metals are to be immobilized, this might be achieved by the addition of sufficient amounts of the anion or anions which can form the inert mineral. A serious complication arises from the fact that all soils have several other cations that can and do react with the anions.

This paper is a review of the equilibrium-state chemistry for the possible immobilizations of four metals: lead, cadmium, arsenic, and mercury. The anions which might precipitate these metals include: oxide, hydroxide, chloride, sulfate, sulfide, phosphates, molybdate, and carbonate. The metal ions which can interfere with these precipitation reactions are calcium, magnesium, iron, aluminum, and manganese. All of the probable combinations are reviewed, and possible immobilization strategies are evaluated from the point of view of thermodynamic stability using free energies of formation scattered throughout the literature. The systems are examined from the point of view of the phase rule and stoichiometric consideration over the 2–12 pH range.

ACKNOWLEDGMENTS

The US EPA has not subjected this manuscript to internal policy review, thus it does not necessarily reflect Agency policy. Mention of trade names of commercial products does not constitute endorsement or recommendation for use. The use of existing literature-derived data not generated by US EPA was not subjected to US EPA quality assurance procedures, therefore no attempt to was made to verify the quality of the data. The authors wish to thank P. Burke for his careful review of the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.