843
Views
10
CrossRef citations to date
0
Altmetric
Articles

A review of managed nitrate addition to enhance surface water quality

, , , , , , , & show all
Pages 673-700 | Published online: 08 Apr 2016
 

Abstract

Nitrate is a significant water pollutant with potential environmental impacts ranging from eutrophication to health risks to infants. But under certain circumstances nitrate may enhance water quality through a number of mechanisms, including enhancing oxidant capacity, regulation of redox potential, and suppression of nitrogen-fixing cyanobacteria. In this review the authors explore a range of case studies in which nitrate addition enhanced surface water quality including: purposeful addition of nitrate salts to lakes to repress internal phosphorus (P) loading, enhance organic matter oxidation, or impede bottom-water accumulation of methylmercury; purposeful and incidental addition of nitrate from point and nonpoint discharges to reservoirs and lakes; nitrogen (N) addition to lakes to affect phytoplankton and zooplankton composition; and nitrate addition to estuary sediment to repress hydrogen sulfide production. Nitrate addition decreased internal P and methylmercury loading, repressed sulfide production, and enhanced surface water quality by lowering total P, chlorophyll content, and phytoplankton dominance by cyanobacteria. No case study reported a worsening of eutrophic conditions due to nitrate addition, and a number of studies reported near complete loss of nitrate from the systems to which it was added. When purposely adding nitrate to anoxic surface waters, protocols should be used to maximize nitrate loss via biological denitrification but minimize enhancement of phytoplankton productivity. These protocols should include adding nitrate close to the sediment-water interface to promote nitrate loss via denitrification, managing the timing and magnitude of nitrate addition so that nitrate is depleted prior lake overturn in the fall, and not adding nitrate to N-limited systems. Elimination of existing N discharges to receiving waters should be implemented on a case-by-case basis with the awareness that nitrate in discharges may enhance surface water quality, particularly by suppressing internal P loading and associated phytoplankton productivity. In addition, managers and regulators should look to couple existing nitrate discharges with hypoxic water bodies in an effort to sustainably enhance water quality while removing nitrate from aquatic ecosystems via biological denitrification.

Acknowledgments

This is contribution No. 328 of the Upstate Freshwater Institute. The authors would like to thank the editor and anonymous reviewers for thoughtful guidance in developing this manuscript.

Funding

The development of this article was supported in part through a Bullitt Foundation Environmental Fellowship (Seattle, Washington) and the Nitrogen Systems: Policy-oriented Integrated Research and Education (NSPIRE) program at Washington State University, which was funded via the National Science Foundation's Integrative Graduate Education and Research Traineeship (IGERT) program.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.