880
Views
8
CrossRef citations to date
0
Altmetric
Reviews

The enigma of environmental organoarsenicals: Insights and implications

, , , & ORCID Icon
Pages 3835-3862 | Published online: 19 Jul 2021
 

Abstract

Over 300 species of naturally occurring-organoarsenicals have been identified with the development of modern analytical techniques. Why there so many environmental organoarsenicals exist is a real enigma. Are they protective or harmful? Or are they simply by-products of existing pathways for non-arsenical compounds? Fundamental unanswered questions exist about their occurrence, prevalence and fate in the environment, metabolisms, toxicology and biological functions. This review focuses on possible answers. As a beginning, we classified them into two categories: water-soluble and lipid-soluble organoarsenicals (arsenolipids). Continual improvements in analytical techniques will lead to identification of additional organoarsenicals. In this review, we enumerate identified environmental organoarsenicals and speculate about their pathways of synthesis and degradation based on structural data and previous studies. Organoarsenicals are frequently considered to be nontoxic, yet trivalent methylarsenicals, synthetic aromatic arsenicals and some pentavalent arsenic-containing compounds have been shown to be highly toxic. The biological functions of some organoarsenicals have been defined. For example, arsenobetaine acts as an osmolyte, and membrane arsenolipids have a phosphate-sparing role under phosphate-limited conditions. However, the toxicological properties and biological functions of most organoarsenicals are largely unknown. The objective of this review is to summarize the toxicological and physiological properties and to provide novel insights into future studies.

Graphical abstract

Handling Editors:

Additional information

Funding

Our research was supported by the National Natural Science Foundation of China (42077289 and 41877422), grants GM136211 and GM055425 from the U.S. National Institutes of Health to BPR and BIO/MCB Grant 1817962 from the U.S. National Science Foundation to MY.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.