3,395
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Microalgae-based carbon capture and utilization: A critical review on current system developments and biomass utilization

ORCID Icon, , , , , , , ORCID Icon, & show all
Pages 216-238 | Published online: 08 Mar 2022
 

Abstract

Carbon capture and utilization (CCU) is an emerging technology with commercial potential to convert atmospheric carbon dioxide (CO2) into net zero or negative emission products. In microalgae-based CCU, microalgae utilize CO2 and sunlight to generate biomass for commercial applications. This paper reviews the current state of microalgal culture development for CCU and highlights its potential contribution to addressing climate change challenges. Current microalgal culture systems have not been designed for high throughput biomass growth and carbon capture. Raceways, high-rate algal ponds, and photobioreactors are the most widely used for microalgal cultivation at a large-scale. The limitations of these systems are related to microalgal growth requirements. Ponds are operated at narrow depth to ensure sufficient light distribution and thus need a large land surface. CO2 gas needs to be in a dissolved form for efficient utilization by microalgae. Innovative system designs to achieve optimized distribution of light, nutrient, and CO2 utilization for enhanced biomass production are crucial to achieve large-scale CO2 capture by microalgae. Data corroborated in this review highlights several innovative techniques to deliver CO2 effectively and enhance light illumination to microalgal cells. Submerged and internal illuminations can enhance light distribution without compromising culture volume and land requirements. CO2 delivery technique selections mainly depend on CO2 sources. The carbonation column appears to be the best option regarding efficiency, easy operation, and simple design. The downstream processes of microalgal culture (i.e. harvesting, biomass utilization, and water reuse) are important to make microalgae-based CCU a significant contribution to global carbon mitigation solutions.

Graphical abstract

Acknowledgements

Luong N. Nguyen acknowledges the University of Technology Sydney for the Vice-Chancellor’s Postdoctoral Research Fellowship.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.