390
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Role and potential of the semi-classical/-quantum mechanism of the extracellular environment and cell envelope in Direct Interspecies Electron Transfer (DIET)-driven biomethanation

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 581-601 | Published online: 09 Nov 2023
 

Abstract

The extracellular electron transfer (EET) capability of Methanosarcina spp. in direct interspecies electron transfer (DIET) has profoundly increased our understanding of microbial kinetics and energetics in biomethanation systems. In Methanosarcina spp., such EET mechanisms occur in the cell envelope and biofilm matrix. These substances are composed of protein-like, polysaccharide-rich biomolecular structures that were previously thought to contribute only to cell support and shape; while their participation in dynamic processes remains unclear and has gathered widespread interest. This review first addresses the molecular structure and chemical characteristics of the extracellular matrix and cell wall polymers in Methanosarcina spp. Next, we focus on recent theoretical studies on the conduction and EET mechanisms of the extracellular matrix and cell wall polymers: tunnelling, hopping, proton-activated electron transfer and voltage-dependent electron transport. We conclude this review by discussing the state-of-the-art electrochemical techniques and experiments and the associated challenges, i.e., the kinetic isotope effect and on–off resonance switching. The border impacts of such conductive pathways may offer a semi-classical/quantum perspective on microbiology and mark the renaissance of anaerobic biotechnology.

GRAPHICAL ABSTRACT

Acknowledgments

The authors thank the Bolashak Scholarship Program (JSC "Center for International Programs", Kazakhstan) for their financial support. Declarations of interest: none.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.