616
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

On a ℂ2-valued integral index transform and bilateral hypergeometric series

ORCID Icon
Pages 827-845 | Received 26 Oct 2021, Accepted 04 Mar 2022, Published online: 24 Mar 2022

Abstract

We discuss the spectral decomposition of the hypergeometric differential operators on the line Rez=1/2, such operators arise in the problem of decomposition of tensor products of unitary representations of the universal covering of the group SL(2,R). Our main purpose is a search of natural bases in generalized eigenspaces and variants of the inversion formula.

Mathematics Subject Classifications:

1. Introduction

1.1. The hypergeometric opertor D on the line

It is well known that classical hypergeometric systems of orthogonal polynomials are eigenfunctions of certain differential or difference operators (see, e.g. [Citation1], [Citation2, Sect. 10.8–10.13, 10.21–22], [Citation3, Sect. 6.10, Ex. 6.29–6.37]). On the other hand many classical integral transforms, as the Hankel transform, the Kontorovich–Lebedev transform, the 2F1-Wimp transform, the Jacobi transform (synonyms: the Olevskiï transform, the generalized Mehler–Fock transform), etc., can be obtained as spectral decompositions of certain differential or difference operators with continuous spectra (see collections of examples with differential operators in [Citation4, Ch. 4], [Citation5, Sect. XIII.8]).

We consider the following differential operator: (1.1) D:=ddx(14+x2)ddx+(α+iβ)24(1/2+ix)+(αiβ)24(1/2ix)+14(1.1) in L2(R). The parameters α, β are real. Clearly, replacing (α,β) by (α,β) does not change the operator, so we can assume α0.

As an algebraic expression D is a hypergeometric differential operator, spectral expansions of similar operators produce the Jacobi polynomials (see, e.g.[Citation1, Sect. 9.8]) and the ‘Jacobi integral transform’, see [Citation4,Citation6], [Citation7, Sect. 4.16], [Citation5, Sect. XIII.8, Theorem on p. 1526], [Citation8–10]). Once more counterpart of D was considered in [Citation11].

The operator D has a continuous spectrum on the half-line λ0 with multiplicity two and a finite number of discrete points in the domain λ>0. The explicit spectral decomposition of D was obtained in [Citation12]. Since the spectrum has multiplicity, there arises a question about possible choices of natural bases in spaces of solutions of the equation Df=λf for λ0.

1.2. Notation

Denote Γ[a1,,anb1,,bm]:=Γ(a1)Γ(an)Γ(b1)Γ(bm).By FpFq[a1,,apb1,,bq;z]:=n=0(a1)n(ap)n(b1)n(bq)nn!znwe denote generalized hypergeometric functions, here (a)n:=Γ(a+n)Γ(a):={a(a+1)(a+n1)if n0;1(a1)(a+n)if n0,is the Pochhammer symbol. By FpHp[a1,,apb1,,bp;z]:=n=(a1)n(ap)n(b1)n(bp)nznwhere |z|=1.We denote bilateral hypergeometric series, see, e.g. [Citation13, Ch. 6]. If bp=1, then n<0 vanishes and (bp)n=(1)n=n!, so we get a hypergeometric function FpFp1[]. We prefer another normalization of bilateral series FpHp[a1,,apb1,,bp;z]:=1Γ[1a1,,1ap,b1,,bp]FpHp[a1,,apb1,,bp;z]=n=((1)pz)nΓ[1a1n,,1apn,b1+n,,bp+n].All summands of the latter sum are well defined (singularities are removable). The series absolutely converges on the circle |z|=1 if Re(ajbj)<1. If Re(ajbj)<0, then the series conditionally converges for |z|=1, z1. The sum has a continuationFootnote1 to a function real analytic in z=eiφ and meromorphic in a1,…, ap, b1,,bp.

The Dougall formula (see [Citation14, (1.4.1)] or [Citation13, (6.1.2.1)]) gives (1.2) 2H2[a1,a2b1,b2;1]=Γ[b1+b2a1a21]Γ[b1a1,b1a2,b2a1,b2a2].(1.2)

1.3. The integral transform and the inversion formula

For any σC, tC we define a function Φ(σ,t;x)=Φα,β(σ,t;x) on R by (1.3) Φ(σ,t;x):=(12+ix)t(12ix)1/2tσ×2H2[1α+iβ2+σ+t,1+αiβ2+σ+t1α+iβ2+t,1+α+iβ2+t;12+ix12ix],(1.3) where branches of the power functions in (1.3) are defined by the condition (12±ix)τ|x=0=eτln(1/2).We have DΦ(σ,t;x)=σ2Φ(σ,t;x),so for each σ we have a family of functions depending on a complex parameter t in a two-dimensional space of solutions. For σiR we have Φ(σ,t;x)=O(|x|1/2)as x,in this case Φ(σ,t;x) are generalized eigenfunctions of D (see [Citation15, Sect. 2.2]).

For fL2(R) we define a function Jα,βf(σ;t):=f(x)Φα,β(σ,t;x)¯dx:=L2limAAAf(x)Φα,β(σ,t;x)¯dxdepending on σ=iνiR, tC. The L2-lim is a limit of the family of functions φA:=AA()dx in the sense of L2(R).

If fL2(R) is compactly supported, then Jα,βf(σ;t) is well defined for all σ, tC2, so we get a function on C2 holomorphicFootnote2 in σ¯, t¯.

We started with a function of one variable x and get a function Jα,βf(σ,t) of two variables σiR, tC. These data are overfilled, for a reconstruction of f it is sufficient to know values of Jα,βf(σ,t) for two values of t for each σ.

Theorem 1.1

Let 0α1/2. Consider two measurable maps σt(σ), σs(σ) defined for σ=iν, where ν0. Assume that stZ a.s. Then

(a)

For f1L2(R) we have (1.4) f(x)=12π0(Φ(iν,t(iν);x)Φ(iν,s(iν);x))×Rt(iν),s(iν)(Jα,βf(iν,t(iν))Jα,βf(iν,s(iν)))dν,(1.4) where the matrix spectral density R is (1.5) Rt,s:=π42coshπ(β+iσ)coshπ(βiσ)cosπ(ασ)cosπ(α+σ)Γ[2σ,2σ]×1sinπ(st)sinπ(s¯t¯)(cosπ(σ+ss¯)cosπ(σ+ts¯)cosπ(σ+st¯)cosπ(σ+tt¯)).(1.5) We understand the integral in (Equation1.4) as a L2-limit as B of integralsFootnote3 0B()dν.

(b)

For f1, f2L2(R) we have the Plancherel formula (1.6) f1(x)f2(x)¯dx=12π0(Jα,βf1(iν,t(iν))Jα,βf1(iν,s(iν)))Rt(iν),s(iν)(Jα,βf2(iν,t(iν))Jα,βf2(iν,s(iν)))dν.(1.6)

Theorem is proved in Section 2.

Remark

It is more-or-less obvious that matrix R admits an explicit expression in the terms of Γ-functions. But a multiplicative structure of the matrix elements is a result of a long calculation and looks as a happy-end, see, e.g. transformation (Equation2.25) below.

Remark

Let t=±α+iβ2. In this case Φ=Φ(σ,±α+iβ2;x) are hypergeometric functions up to simple functional factors, for this case our statement is formulated separately in Proposition 2.2.

1.4. The case α>1/2 and Romanovski polynomials

This subsection contains nothing new comparatively [Citation12], however it is important for understanding of our topic. For α>1/2 the operator D has also a finite family of L2-eigenfunctions Θα,βk(x):=(12+ix)(α+iβ)/2(12ix)(αiβ)/22F1[k,k2α+11αiβ;12+ix]=(12+ix)(α+iβ)/2(12ix)(3α+iβ)/21k×2F1[k2α+1,1αiβ+k1αiβ;12+ix12ix]=Γ[2αk,α+iβk,1αiβ]Φ(k+α1/2;(α+iβ)/2;x),where k ranges in integers satisfying the condition (1.7) 0k<α1/2(1.7) (so for α1/2 such functions are absent). The functions Rα,βk(x):=2F1[k,k2α+11αiβ;12+ix]are the Romanovski polynomials [Citation16] (we use a nonstandard normalization), they are orthogonal on the line with respect to the weight w(x)=(1/2+ix)(α+iβ)(1/2ix)(αiβ).This weight decreases at infinity as a power, for this reason we have only a finite family of orthogonal polynomials. The L2-norms are given by (see [Citation17]) (1.8) Θα,βkL2(R)2=12πRα,βk(x)Rα,βk(x)¯dx(1/2+ix)α+iβ(1/2ix)αiβ=k!Γ(2αk)(2n2α+1)Γ(α+iβ)Γ(αiβ).(1.8) For α>1/2 in the right-hand side of the inversion formula (Equation1.4) there arise additional terms +kΘα,βkL2(R)2f,Θα,βkΘα,βk(x),where the summation is taken over k satisfying (Equation1.7).

1.5. Difference operators

Next, we find the image of the operator of multiplication by x under the transformation Jα,β.

Theorem 1.2

Let f(x) be a compactly supported integrable function on R. Let the operator Jα,β send f(x) to F(σ,t). Then Jα,β sends ixf(x) to the function (1.9) ZF(σ,t)=(1/2+ασ¯)(1/2ασ¯)(1/2+iβσ¯)(1/2iβσ¯)(2σ¯)(12σ¯)F(σ1,t)+2iαβ(1+2σ¯)(1+2σ¯)F(σ,t)+12σ¯(1+2σ¯)F(σ+1,t).(1.9)

Remark

Recall that in the inversion formula and in the Plancherel formula the integrations are taken over the imaginary axis σiR. So Z is a difference operator in the direction transversal to the contour of integration. Similar facts take place for other classical index integral transform as the Jacobi transform (see [Citation18, Th. 2.1)]), the Kontorovich–Lebedev transform (see [Citation19, Th. 3.2, Prop. 3.3]) and the Wimp transform (see [Citation19, Th. 4.2]). Moreover, Cherednik showed that the multi-dimensional Harish-Chandra transform sends a certain algebra of operators of multiplications to an algebra of difference operators (see [Citation20,Citation21]).

1.6. The further structure of the paper

Proof of Theorem 1.1 is contained in Section 2, this section contains also two other variants of the inversion formula, see Proposition 2.2, Section 2.5. Theorem 1.2 is proved in Section 3. The last Section 4 contains evaluations of the transform of some functions.

1.7. Purposes of this work

The operator D appears in a natural way in the problem of decomposition of tensor products of unitary representations of the group SL(2,R) and its universal covering group, see [Citation12]. Tensor products of unitary representation of SL(2,R) were topics of many papers, in particular, [Citation22–25]. However, the appearance of a multiplicity makes the topic non-flexible for further development, the same obstacles in more serious forms arise for numerous spectral problems of non-commutative harmonic analysis with multiplicities. An informal purpose of the present paper is a search of an approach to such problems. In particular, this gives at least additional hopes for harmonic analysis related to SL(2,R) and other rank one classical groups. On the other hand, there arises a question about bilateral analogs of some other hypergeometric integral transforms.

2. Proof of the inversion formula

2.1. A reduction of D to a Schrödinger operator

We consider a unitary operator S:L2(R)L2(R) given by the formula (2.1) Sf(y):=f(12sinhy)(12coshy)1/2.(2.1) It sends the operator D to the operator H:=d2dy2q(y),where q(y):=1+4α24β2+8αβsinhycosh2y(cf. [Citation4, Sect. 4.16]). We get a Schrödinger operator with a rapidly decaying potential q(y), and we can apply general statements about such operators, see, e.g. [Citation15, Sect. II.6]. The operator H defined on the space C0(R) of smooth compactly supported functions is essentially self-adjoint in L2(R), see [Citation15, Th. II.1.1] (therefore D also is essentially self-adjoint). The space L2 splits as a direct sum L2(R):=VdiscVcont of two H-invariant subspaces corresponding to discrete and continuous spectrum. The subspace Vdisc is finite-dimensional, eigenfunctions are L2-solutions of the equation Hfs=s2f, s>0 and they have asymptotics of the form fs(y)=C1esy(1+o(1))as y+.=C2esy(1+o(1))as y.Next, let σ=iνiR. Consider the two-dimensional space Vσ consisting of solutions of the equation Hf=σ2f, they have asymptotics of the form f(y)=aeiνy(1+o(1))+beiνy(1+o(1))as y+;=ceiνy(1+o(1))+deiνy(1+o(1))as y,so these functions are not in L2. We define an inner product in Vσ by (2.2) f1,f2Vσ:=12(a1a¯2+b1b¯2+c1c¯2+d1d¯2).(2.2) Next, we define two special canonical solutions of Hf=σ2f, they have asymptotics of the form (2.3) θ1(ν;y)=eiνy(1+o(1))+A(ν)eiνy(1+o(1))as y;=B(ν)eiνy(1+o(1))as y+,(2.3) and (2.4) θ2(ν;y)=D(ν)eiνy(1+o(1))as y;=C(ν)eiνy(1+o(1))+eiνy(1+o(1))as y+,(2.4) it can be shown that the scattering matrix (A(ν)B(ν)D(ν)C(ν)) is unitary and symmetric (see [Citation15, Sect. II.6], [Citation26, Sect. 36]). For this reason, θ1(ν;y), θ2(ν;y) form an orthogonal basis in Vσ with respect to the inner product (Equation2.2).

Next, consider two operators, I:L2(R)L2(R+)L2(R+),J:L2(R+)L2(R+)L2(R)given by I:f(y)(12πf(y)θ1(ν,y)¯dy,12πf(y)θ2(ν,y)¯dy)and J:(φ1(ν),φ2(ν))12πφ1(ν)θ1(ν,y)dν+12πφ2(ν)θ2(ν,y)dν.Then kerI=Vdisc, imJ=Vcont. The operator I is a unitary operator VcontL2(R)L2(R) and J is the inverse operator L2(R)L2(R)Vcont. See [Citation15, Th. 6.2].

We will use the statement in the following form. Let us choose (in a measurable way) a basis Ψ1(ν;y), Ψ2(ν;y) in each Vσ. Consider the corresponding Gram matrix (2.5) Δ(ν):=(Ψ1(ν;y),Ψ1(ν;y)Ψ1(ν;y),Ψ2(ν;y)Ψ2(ν;y),Ψ1(ν;y)Ψ2(ν;y),Ψ2(ν;y)).(2.5) Denote (2.6) Ξ(ν):=Δ(ν)1.(2.6) Consider the space C0(R+)C0(R+) equipped with the inner product (2.7) (h1,h2),(h1,h2):=12π0(h1(ν)h2(ν))Ξ(ν)(h¯1(ν)h¯2(ν))dν,(2.7) denote by L[Ξ] the completion of C0(R+)C0(R+) with respect to this inner product. Then the operator I:f(f(x),Ψ1(ν,x)L2(R),f(x),Ψ2(ν,x)L2(R))is a unitary operator from Vcont to L[Ξ].

2.2. A reduction of D to a hypergeometric differential operator

We set r(x):=(12+ix)(α+iβ)/2(12+ix)(αiβ)/2and pass to the differential operator Bf(x):=r(x)1D(r(x)f(x)).Next, we pass to a complex variable z=12+ixand come to a new operator A:=z(1z)d2dz2(1+α+iβz(2+2α))ddz+(α+12)2.The equation for eigenfunctions Aφ=σ2φ becomes a special case of the hypergeometric differential equation [z(1z)d2dz2+(cz(a+b+1))d2dz2ab]φ(z)=0with (2.8) c=1+α+iβ,a=12+α+σ,b=12+ασ.(2.8) We write two Kummer solutions [Citation14, (2.9.3),(2.9.20)] of the hypergeometric equation (1z)a2F1[a,cbc;zz1],z1c(1z)ca12F1[a+1c,1b2c;zz1].Substituting (Equation2.8), z=1/2+ix and multiplying by r(x) we get two following solutions of the equation Dψ=σ2ψ: (2.9) Ψ1(σ;x)=(12+ix)(α+iβ)/2(12ix)(α+iβ)/21/2σ×2F1[12+α+σ,12+iβ+σ1+α+iβ;1/2+ix1/2ix];(2.9) (2.10) Ψ2(σ;x)=(12+ix)(α+iβ)/2(12ix)(α+iβ)/21/2σ×2F1[12α+σ,12iβ+σ1αiβ;1/2+ix1/2ix].(2.10) These solutions are obtained one from another by a substitution (α,β)(α,β), this substitution does not change the operator D.

Remark

In this place we must assume (α,β)(0,0). Otherwise Ψ1, Ψ2 coincide, and we come to the logarithmic case of the hypergeometric differential equation, see [Citation14, Sect. 2.3], [Citation3, Sect. 2.3].

We need asymptotics of these functions as x±. In this case the argument of hypergeometric function tends to 1, we apply formulas [Citation14, (2.10.1),(2.10.5)], 2F1[a,bc;u]=Γ[c,cabca,cb]2F1[a,ba+bc+1;1u]+Γ[c,a+bca,b](1u)cab2F1[ca,cbcab+1;1u].We have (1u)|u=(1/2+ix)/(1/2ix)=(12ix)1.Denote (2.11) A(α,β,σ):=Γ[1+α+iβ,2σ1/2+ασ,1/2+iβσ];(2.11) (2.12) γ(α,β,σ):=exp{π2(iαβ+iσ)}.(2.12) Then (2.13) Ψ1(σ;x)=eπi/4γ(α,β,σ)A(α,β,σ)x1/2σ(1+o(1))+eπi/4γ(α,β,σ)A(α,β,σ)x1/2+σ(1+o(1))as x+;(2.13) (2.14) =eπi/4γ(α,β,σ)A(α,β,σ)(x)1/2σ(1+o(1))+eπi/4γ(α,β,σ)A(α,β,σ)(x)1/2+σ(1+o(1))as x.(2.14) For Ψ2(σ;x) we have a similar expression with (α,β) replaced by (α,β). The formulas hold for any σC. For σiR both summands of the asymptotic have the same order (and Ψ1,2(σ;x) are almost L2-functions), for σiR one summand dominates another.

To adapt the general reasoning from Section 2.1 we must apply the unitary operator (Equation2.1), x1/2±σ transform as (2.15) x1/2±σ(12sinhy)1/2±σ(12coshy)1/22σe±σyas y+;(2.15) (2.16) (x)1/2±σ(12sinhy)1/2±σ(12coshy)1/22σeσyas y.(2.16)

2.3. The Gram matrix for the hypergeometric eigenfunctions

Let σiR. Our next purpose is to evaluate the matrices Δ and Ξ=Δ1 (see (Equation2.5)) for the eigenfunctions Ψ1, Ψ2 given by (Equation2.9), (Equation2.10).

Lemma 2.1

(a)

The matrix elements of the Gram matrix Δ for eigenfunctions Ψ1, Ψ2 are Δ11=2πcoshπ(βiσ)coshπ(β+iσ)Γ[1+α+iβ,1+αiβ,2σ,2σ1/2+ασ,1/2+α+σ];Δ12=2πcosπ(ασ)cosπ(α+σ)Γ[1α+iβ,1+α+iβ,2σ,2σ1/2+iβσ,1/2+iβ+σ];Δ21=2πcosπ(ασ)cosπ(α+σ)Γ[1αiβ,1+αiβ,2σ,2σ1/2iβσ,1/2iβ+σ];Δ22=2πcoshπ(βiσ)coshπ(β+iσ)Γ[1αiβ,1α+iβ,2σ,2σ1/2ασ,1/2α+σ].

(b)

The determinant of Δ is detΔ=4π2cosπ(ασ)cosπ(α+σ)coshπ(βiσ)coshπ(β+iσ)×(α2+β2)Γ[2σ,2σ]2.

Proof.

(a) We present a calculation of Δ11, (2.17) Δ11=12(|γ(α,β,σ)|2+|γ(α,β,σ)|2)|A(α,β,σ)|2+12(|γ(α,β,σ)|2+|γ(α,β,+σ)|2)|A(α,β,σ)|2.(2.17) Let us evaluate the first summand. We have 12(|γ(α,β,σ)|2+|γ(α,β,σ)|2)=12(eπ(β+iσ)+eπ(β+iσ))=coshπ(βiσ)and |A(α,β,σ)|2=Γ[1+α+iβ,2σ1/2+ασ,1/2+iβσ]Γ[1+αiβ,2σ1/2+α+σ,1/2iβ+σ]=1πcoshπ(β+iσ)Γ[1+α+iβ,1+αiβ,2σ,2σ1/2+ασ,1/2+α+σ].We see that the first summand in (Equation2.17) is even in σ. Therefore it is equal to the second summand, and we come to the final expression.

Evaluations of other matrix elements are similar.

(b) Evaluating detΔ=Δ11Δ22Δ12Δ21 we meet the following subexpressions: 1Γ[12+α+σ,12+ασ,12α+σ,12ασ]=1π2cosπ(ασ)cosπ(α+σ);1Γ[12+iβ+σ,12+iβσ,12iβ+σ,12iβσ]=1π2coshπ(βiσ)coshπ(β+iσ);Γ[1+α+iβ,1+αiβ,1α+iβ,1αiβ]=π2(α+iβ)(αiβ)sinπ(α+iβ)sinπ(αiβ).Applying these transformations we get the following expression for detΔ: 4π2(α2+β2)cosπ(ασ)cosπ(α+σ)coshπ(βiσ)coshπ(β+iσ)Γ[2σ,2σ]2sinπ(α+iβ)sinπ(αiβ)×{coshπ(βiσ)coshπ(β+iσ)cosπ(ασ)cosπ(α+σ)}.Simplifying the expression in the curly brackets we get {}=sinπ(α+iβ)sinπ(αiβ)and we come to the final expression.

Now we write the matrix Δ1 in a straightforward way and get the following statement, see [Citation12]:

Proposition 2.2

Let (α,β)(0,0). Then for the eigenfunctions Ψ1(x), Ψ2(x) given by (Equation2.9)(Equation2.10) the spectral matrix Ξ in (Equation2.7) is given byFootnote4 12πΓ[2σ,2σ](Γ[12+α+σ,12+ασ]×Γ[αiβ,α+iβ]Γ[12iβ+σ,12iβσ]×Γ[α+iβ,α+iβ]Γ[12+iβ+σ,12+iβσ]×Γ[αiβ,αiβ]AAΓ[12α+σ,12ασ]×Γ[αiβ,α+iβ]).

2.4. Bilateral hypergeometric functions 2H2

It is easy to see that functions 2H2[a1,a2b1,b2;z] satisfy the differential equation {z(zddz+a1)(zddz+a2)(zddz+b11)(zddz+b21)}F(z)=0(cf. [Citation13, (2.1.2.1)]). Functions 2H2 differ from 2H2 by constant factors. Moreover for any tC the function Jt(z):=(z)t2H2[a1+t,a2+tb1+t,b2+t;z]satisfy the same differential equation (we assume that (z)t|z=1=1). Therefore any three functions Jt1(z), Jt2(z), Jt3(z) are linear dependent, i.e. (2.18) C1Jt1(z)+C2Jt2(z)+C3Jt3(z)=0(2.18) for some C1, C2, C3. In fact, see [Citation27], (2.19) sinπ(t2t3)Jt1(z)+sinπ(t3t1)Jt2(z)+sinπ(t1t2)Jt3(z)=0.(2.19)

Remark

These coefficients C1, C2, C3 of the linear dependence can be derived in the following way. The Dougall formula (Equation1.2) provides us an explicit value for any 2H2(z) at z = 1. We substitute z=e0+i and z=e2πi and get two equations for the coefficients.

Setting t1=0,t2=1b1,t3=1b2to (Equation2.19) we get an expression of an arbitrary function 2H2(z) in terms of Gauss hypergeometric functions.

In particular, we get an expression for the functions Φ(σ,t;x):=(12+ix)t(12ix)1/2tσ×2H2[1α+iβ2+σ+t,1+αiβ2+σ+t1α+iβ2+t,1+α+iβ2+t;12+ix12ix],defined in Section 1.3. Namely, (2.20) Φ(σ,t;x)sinπ(α+iβ)=C1(σ)Ψ1(σ;x)sinπ(t+α+iβ2)+C2(σ)Ψ2(σ;x)sinπ(t+α+iβ2),(2.20) where (2.21) C1(σ)=1Γ[12iβσ,12ασ,1+α+iβ]:=C(α,β,σ);(2.21) (2.22) C2(σ)=1Γ[12+iβσ,12+ασ,1αiβ]=C(α,β,σ).(2.22)

Lemma 2.3

(2.23) Φ(σ,t;x),Φ(σ,s;x)Vσ=Mcosπ(σ+ts¯),(2.23) where M=coshπ(β+iσ)coshπ(βiσ)cosπ(α+σ)cosπ(ασ)Γ[2σ,2σ].

Proof.

Let Δ be the Gram matrix of the eigenfunctions Ψ1, Ψ2, see Lemma 2.1. Then (C1Δ11C¯1C1Δ12C¯2C2Δ21C¯1C2Δ22C¯2)=2π4MS,where S=(coshπ(βiσ)cosπ(α+σ)cosπ(ασ)coshπ(β+iσ)).Let us verify the identity for the first matrix element: C1Δ11C¯1=2πcoshπ(βiσ)coshπ(β+iσ)Γ[1+α+iβ,1+αiβ,2σ,2σ1/2+ασ,1/2+α+σ]×1Γ[12iβσ,12ασ,1+α+iβ]1Γ[12+iβ+σ,12α+σ,1+αiβ].The product of three Γ-factors is 1π3cosπ(α+σ)cosπ(ασ)Γ[2σ,2σ]coshπ(βiσ),and we come to the desired expression.

Now we are ready to evaluate (2.24) Φ(σ,t;x),Φ(σ,s;x)Vσ=2π4Msinπ(α+iβ)sinπ(αiβ)×{(sinπ(α+iβ2+t)sinπ(α+iβ2t))S(sinπ(αiβ2+s¯)sinπ(αiβ2s¯))}.(2.24) The expression in the curly bracket is (2.25) {}=sinπ(α+iβ2+t)coshπ(βiσ)sinπ(αiβ2+s¯)+sinπ(α+iβ2+t)cosπ(α+σ)sinπ(αiβ2s¯)+sinπ(α+iβ2t)cosπ(ασ)sinπ(αiβ2+s¯)+sinπ(α+iβ2t)coshπ(β+iσ)sinπ(αiβ2s¯)=cosπ(σ+ts¯)sinπ(α+iβ)sinπ(αiβ),(2.25) this implies the statement of the lemma. The last identity is not obvious, but when written, it admits a straightforward verification.

Proof

Proof of Theorem 1.1

Thus, the Gram matrix of Φ(σ,t;x) and Φ(σ,s;x) is 2π4M(cosπ(σ+tt¯)cosπ(σ+ts¯)cosπ(σ+st¯)cosπ(σ+ss¯)).The inverse matrix is π421M1sinπ(st)sinπ(s¯t¯)(cosπ(σ+ss¯)cosπ(σ+ts¯)cosπ(σ+st¯)cosπ(σ+tt¯))and we come to the formula (Equation1.6).

2.5. A generalized orthogonal system

For completeness we present formulas for the eigenfunctions θ1, θ2, see (Equation2.3)–(Equation2.4). Set θ1(σ;x):=e3πi42π(μ(α,β,σ)M(α,β,σ)Ψ1(σ;x)+μ(α,β,σ)M(α,β,σ)Ψ2(σ;x));θ2(σ;x):=eπi42π(μ(α,β,σ)M(α,β,σ)Ψ1(σ;x)+μ(α,β,σ)M(α,β,σ)Ψ2(σ;x)),where μ(α,β,σ):=eπ2(iα+β+iσ);M(α,β,σ):=Γ[αiβ,12+ασ,1/2+iβσ2σ].Then θ1, θ2 have the following asymptotics at infinity (see (Equation2.15)–(Equation2.16)): θ1(σ;x)=(x)12σ(1+O(x1))+A(σ)(x)12+σ(1+O(x1))as x;=B(σ)x12+σ(1+O(x1))as x+,and θ2(σ;y)=D(σ)(x)12+σ(1+O(x1))as x;=C(σ)x12+σ(1+O(x1))+x12σ(1+O(x1))as x+,where the elements of the scattering matrix are given by A:=12π2(eπβcosπ(ασ)+eπβcosπ(α+σ))Γ[2σ2σ]G;B=D:=12πΓ[12σ,2σ]G;C:=12π2(eπβcosπ(ασ)+eπβcosπ(α+σ))Γ[2σ2σ]G,and G:=Γ[12ασ,12+ασ,12iβσ,12+iβσ].For such functions θ1, θ2 the matrix Ξ in (Equation2.7) is (1001), but we pay for this by longer and less flexible expressions for eigenfunctions.

2.6. The case α=0, β=0

For this case the calculations of this section are not valid, but we can easily apply continuity arguments. Our final formula (Equation1.5) follows from (Equation2.23). To extend the latter formula to our case, it is sufficient to show that coefficients at high terms of asymptotics |x|1/2±σ of Φα,β(σ,t;x) at infinities are continuous at the point (α,β)=(0,0) for σ=iν, where ν>0. These coefficients can be easily written explicitly with formulas (Equation2.20), (Equation2.13)–(Equation2.14). For instance, the coefficient in front of x1/2σ as x+ is (2.26) 1sinπ(α+iβ)/2{γ(α,β,σ)A(α,β,σ)C(α,β,σ)sinπ(t+α+iβ2)γ(α,β,σ)A(α,β,σ)C(α,β,σ)sinπ(tα+iβ2)},(2.26) where γ(), A(), C() are defined by formulas (Equation2.11)–(Equation2.12), (Equation2.21). Substitute α=iβ to the bracket {}. It is easy to see that γ(α,β,σ)|α=iβ=γ(α,β,σ)|α=iβ,similar identities take place also for A(), C(). Therefore for α=iβ the expression {} is zero. So the singularity on the surface α+iβ=0 in (Equation2.26) is removable and the whole expression is continuous.

3. The difference operator

The topic of this section is the proof of Theorem 1.2. In fact, we must show that the kernel F=Φ(σ,t;x) satisfies the equation (3.1) ixF(σ,t;x)=(1/2+ασ)(1/2ασ)(1/2+iβσ)(1/2iβσ)(2σ)(12σ)F(σ1,t;x)2iαβ(1+2σ)(1+2σ)F(σ,t;x)+12σ(1+2σ)F(σ+1,t;x)(3.1) (the variable t is absent in the coefficients).

We use the expression (Equation2.20) for Φ, it is sufficient to show that two terms C1Ψ1(x), C2Ψ2(x) satisfy the same difference equation. We write Ψ1(x) as Ψ1(σ;x)=(12+ix)(α+iβ)/2(12ix)(αiβ)/22F1[12+α+σ,12+ασ1+α+iβ;12+ix],see [Citation14, (2.9.1), (2.9.3)]. The expression for Ψ2(σ;x) is obtained by replacing (α,β)(α,β)

By [Citation18, (2.3)], the Gauss hypergeometric function satisfies the following contiguous relation: y2F1[p,qr;y]=q(rp)(qp)(1+qp)2F1[p1,q+1r;y](q(rp)(qp)(1+qp)+p(rq)(pq)(1+pq))2F1[p,qr;y]+p(rq)(pq)(1+pq)2F1[p+1,q1r;y].Therefore G(σ;x)=Ψ1(σ;x) satisfies the difference equation (3.2) (12+ix)G(σ,x)=(12+ασ)(12+iβσ)2σ(12σ)G(σ1,x){(12+ασ)(12+iβσ)2σ(12σ)+(12+α+σ)(12+iβ+σ)2σ(1+2σ)}G(σ,x)+(12+α+σ)(12+iβ+σ)2σ(1+2σ)F(σ+1,x)(3.2) The expression in the curly brackets can be transformed as {}=12+2iαβ(1+2σ)(1+2σ).If G(σ,x) satisfies the difference equation (Equation3.2), then F(σ;x)=C1(σ)G(σ;x) satisfies equation (Equation3.1). So C1(σ)Ψ1(σ;x) satisfies (Equation3.1). Since expression (Equation3.1) is invariant with respect to the transformation (α,β)(α,β), the summand C2(σ)Ψ2(σ;x) also satisfies the difference equation.

4. Some evaluations

There are many explicit evaluations for the Jacobi transform, this allows to use it as a tool for obtaining non-trivial properties of special functions, see [Citation9,Citation28,Citation29] (see also, [Citation30] for the complex analog of the Jacobi transform). It is interesting to find a collection of evaluations of Jα,βf for some functions f. This section contains few examples.

The transform Jα,β sends the function (12+ix)p(12ix)qto the function (4.1) 2πΓ(p+q+σ¯12)3H3[1αiβ2+σ¯+t¯,1+α+iβ2+σ¯+t¯,1qt¯1αiβ2+t¯,1+αiβ2+t¯,p+12+σ¯+t¯;1].(4.1) To verify this, we must evaluate the integral (12+ix)p(12ix)q×(12+ix)t(12ix)1/2tσ¯2H2[1α+iβ2+σ¯+t¯,1+αiβ2+σ¯+t1α+iβ2+t¯,1+α+iβ2+t¯;12+ix12ix]¯dx.

We expand 2H2 into a series. Integrating term-wise with the formula dx(12+ix)μ(12ix)ν=2πΓ(μ+ν1)Γ(μ)Γ(ν),we come to (Equation4.1).

Remark

The functions (Equation4.1) are bilateral version of Hahn functions, which were considered in [Citation24].

Next, for cases q=±αiβ2 and for p=±α+iβ2 expression (Equation4.1) can be simplified. For instance, the transformation Jα,β sends a function (12+ix)p(12ix)α/2iβ/2to 2sinπ(αiβ2+t¯)Γ(p+α+iβ2)Γ(pα+iβ2)Γ(p+α+iβ12+σ¯)Γ(p+α+iβ12+σ¯)Γ(12ασ¯)Γ(12+iβσ¯).To establish this statement, we substitute q=α/2+iβ/2 to (Equation4.1). Then we get a function of the form 3H3[a1,a2,cb1,b2,c;1]=sinπcπ2H2[a1,a2b1,b2;1]and apply the Dougall formula (Equation1.2).

In a similar way we set p=α/2+iβ/2 and observe that our transform sends (12+ix)(α+iβ)/2(12ix)qto 2cosπ(α+iβ2+σ¯+t¯)Γ(q+αiβ2)Γ(qαiβ2)Γ(q+α+iβ12+σ¯)Γ(q+α+iβ12σ¯)Γ(12+ασ¯)Γ(12+iβσ¯).Two remaining cases are similar.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the FWF (Austrian Science Fund) under grant P31591.

Notes

1 In any case, coefficients of the series FpHp[] have polynomial growth, therefore the series always converge in the sense of distributions on the circle |z|=1.

2 We have Φ(σ,t;x)=O(x1/2+|Reσ|ln|x|) as x±, see (Equation2.20), (Equation2.13)–(Equation2.14). The logarithm arise since formulas (Equation2.13)–(Equation2.14) are valid if σ0,1,2,. For integer σ we come to logarithmic solutions of the hypergeometric differential equation, see [Citation14, Subsect. 2.3.1].

3 See the general statement about self-adjoint differential operators in [Citation5, Th. XIII.5.1, Cor. XIII.5.2.].

4 We write each matrix element as a two-line formula, this allows to obtain a readable expression.

References

  • Koekoek R, Swarttouw RF. The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics and Informatics; 1998. (Report no. 98-17). Preprint. Available from: https://arXiv.org/pdf/math/9602214.pdf.
  • Erdélyi A, Magnus W, Oberhettinger F, et al. Higher transcendental functions. Vol. II, Based, in part, on notes left by Harry Bateman. New York: McGraw-Hill; 1953.
  • Andrews GE, Askey R, Roy R. Special functions. Cambridge: Cambridge University Press; 1999.
  • Titchmarsh EC. Eigenfunction expansions with second-order differential operators. Oxford: Clarendon Press; 1946.
  • Dunford N, Schwartz JT. Linear operators. Part II: spectral theory. Self adjoint operators in Hilbert space. New York: John Wiley & Sons; 1963.
  • Weyl H. Über gewönliche lineare Differentialgleichungen mit singulären Stellen und ihre Eigenfunktionen (2 Note). Nachr Konig Gess Wiss Göttingen Math-Phys. 1910;1910:442–467. In: H. Weyl H., editor. Gesammelte Abhandlungen. Vol. 1. Berlin: Springer-Verlag; 1968, p. 222–247.
  • Olevskiï MN. On the representation of an arbitrary function in the form of an integral with a kernel containing a hypergeometric function (Russian). Dokl AN SSSR. 1949;69:11–14.
  • Koornwinder TH. Jacobi functions and analysis on noncompact symmetric spaces. In: Askey RA, Koornwinder TH, Schempp W, editors. Special functions: group theoretical aspects and applications. Dordrecht: Reidel; 1984. p. 1–85.
  • Koornwinder TH. Special orthogonal polynomial systems mapping to each other by the Fourier-Jacobi transform. Lecture Notes Math. 1985;1171:174–183.
  • Yakubovich SB. Index transforms. River Edge (NJ): World Scientific; 1996.
  • Molchanov VF, Neretin YuA. A pair of commuting hypergeometric operators on the complex plane and bispectrality. J Spectr Theory. 2021;11:509–586.
  • Neretin YuA. Some continuous analogs of the expansion in Jacobi polynomials and vector-valued orthogonal bases. Funct Anal Appl. 2005;39(2):106–119.
  • Slater LJ. Generalized hypergeometric functions. Cambridge: Cambridge University Press; 1966.
  • Erdélyi A, Magnus W, Oberhettinger F, et al. Higher transcendental functions. Vol. I, Based, in part, on notes left by Harry Bateman. New York: McGraw-Hill; 1953.
  • Berezin FA, Shubin MA. The Schrödinger equation. Dordrecht: Kluwer; 1991.
  • Romanovski V. Sur quelques classes nouvelles de polynómes orthogonaux. C R Acad Sci Paris. 1929;188:1023–1025.
  • Askey R. An integral of Ramanujan and orthogonal polynomials. J Indian Math Soc. 1987;51:27–36.
  • Neretin YuA. Index hypergeometric transform and imitation of analysis of Berezin kernels on hyperbolic spaces. Sb Math. 2001;192:403–432.
  • Neretin YuA. Difference Sturm-Liouville problems in the imaginary direction. J Spectr Theory. 2013;3:237–269.
  • Cherednik I. Inverse Harish-Chandra transform and difference operators. Internat Math Res Notices. 1997;1997:733–750.
  • van Diejen JF, Emsiz E. Difference equation for the Heckman–Opdam hypergeometric function and its confluent Whittaker limit. Adv Math. 2015;285:1225–1240.
  • Pukanszky L. On the Kronecker products of irreducible unitary representations of the 2×2 real unimodular group. Trans Amer Math Soc. 1961;100:116–152.
  • Molchanov VF. Tensor products of unitary representations of the three-dimensional Lorentz group. Math USSR-Izv. 1980;15(1):113–143.
  • Groenevelt W, Koelink E, Rosengren H. Continuous Hahn functions as Clebsch-Gordan coefficients. In: Ismail M, Koelink E, editors. Theory and applications of special functions. Papers from the Special Session of the American Mathematical Society Annual Meeting held in Baltimore, MD; January 15–18, 2003. New York: Springer; 2005. p. 221–284.
  • Groenevelt W. Wilson function transforms related to Racah coefficients. Acta Appl Math. 2006;91(2):133–191.
  • Faddeev LD, Yakubovskiï OA. Lectures on quantum mechanics for mathematics students. Providence (RI): Amer Math Soc; 2009.
  • Agarwal RP. General transformations of bilateral cognate trigonometrical series of ordinary hypergeometric type. Canad J Math. 1953;5:544–553.
  • Neretin YuA. Beta-integrals and finite orthogonal systems of Wilson polynomials. Sb Math. 2002;193:1071–1089.
  • Neretin YuA. Index hypergeometric integral transform. Addendum to Russian translation of Andrews GE, Askey R, Roy R. Special functions. Moscow: MCCME; 2013: p. 607–624; English version: Preprint. arXiv:1208.3342.
  • Neretin YuA. An analog of the Dougall formula and of the de Branges-Wilson integral. Ramanujan J. 2021;54:93–106.