205
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Single and Combined Herbicides in Compost on Growth of Sensitive Crops: Green Bean, Cucumber, and Tomato

, , , , &
 

ABSTRACT

Compost is frequently used in vegetable production in China, however the feedstocks used for these composts come from a variety of sources, some of which could contain herbicide residues. To evaluate the risk of herbicides on compost products used as growth substrates, we chose three sensitive vegetable crops: green bean, tomato, and cucumber, and grew them in compost without herbicide (CK), with Clopyralid (C1, 0.001 μg/g), Trifluralin (C2, 0.05 μg/g), Imprelis (C3, 0.01 μg/g), and mixed-herbicides (CM). In the CM treatment, all of the herbicides were added at 1/10 the concentration of the single treatments. The media were amended with the composts at 0, 5, 10, and 20%. Emergence rate, Seedling Vigor Index (SVI) and various growth indexes (shoot height, stem diameter, leaf area, root dry weight, and plant biomass) were determined after 45 days. The results indicated that: compost without herbicides (CK) had a positive influence on plant emergence (except green bean), VSI, and growth. The influence increased with each addition up to 20%. Contaminated composts significantly reduced the emergence rate of tomato and cucumber, especially cucumber; the VSI of tomato and cucumber, especially for tomato; and some of the grown indexes of the three crops. The inhibition was more obvious for tomato and cucumber than for green bean. The inhibition of growth index was greater in CM-20 than the other treatments, even though lower concentrations of each herbicide were used. Compost containing Trifluralin had the most inhibitory effect among the three single herbicides. However, the inhibitory effects varied in the different treatments. In conclusion, compost can increase the emergence rate and plant growth index (shoot height, stem diameter, leaf area, root dry weight, and plant biomass), but composts polluted by herbicides had negative impacts on plant growth, especially at higher compost amendment ratios of 20%. Therefore, the utilization of compost made from agricultural wastes, especially in vegetable fields, should be closely monitored.

Additional information

Funding

Financial support from the National Science and Technology Pillar Program in rural areas (2013BAD20B01) and China Special Fund for Agricultural Research in the Public Interest “Research and Demonstration of Comprehensive Utilization for Vegetable by-products” (201303079).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.