Publication Cover
Materials Technology
Advanced Performance Materials
Volume 35, 2020 - Issue 3
1,604
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Effects of cyclic voltammetric scan rates, scan time, temperatures and carbon addition on sulphation of Pb disc electrodes in aqueous H2SO4

, , , , , , & show all
Pages 135-140 | Received 10 Nov 2015, Accepted 24 Nov 2015, Published online: 29 Jan 2016
 

Abstract

Herein, we aim to specifying effects of cyclic voltammetric scan rates, scan time, temperatures and carbon addition on electrochemical sulphation of lead disk electrodes. Electrochemical transformation between solid Pb and solid PbSO4 was investigated by cyclic voltammetries (CVs) of Pb disk electrodes in aqueous H2SO4, in line with the morphology change of electrodes before and after CV polarizations. Too rapid or slow scan rates tend to cause more irreversible sulphation. Long-duration cycling inevitably causes loss of active layer on the electrode surface and incurs more irreversible sulphation. Sulphation becomes more efficient and reversible at elevated temperature. Reversibility of sulphation of lead gets enhanced with the formation of more uniform and less crystalline particles. The irreversible sulphation became less with the addition of carbons (CNT or AB) in the electrolyte, due to lower polarizations upon carbon addition. The protocol of carbon addition is more effective at initial stage of cycling and becomes less effective at later stages. It is acknowledged that the improvement on long-term cycling remains a challenge, yet, which deserves further study.

Acknowledgement

This work was supported by State Grid Henan Electric Power Research Institute, under the projects of “Research on the safe and recycle treatment of waste from substations”.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.