180
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Fabrication of three-dimensional porous cobalt network-supported cobalt oxides nanoflake arrays for electrochemical energy storage

, , , , , & show all
Pages 532-536 | Received 04 Apr 2016, Accepted 09 Apr 2016, Published online: 04 May 2016
 

Abstract

Smart combination of porous metal with metal oxides is important for the construction of high-performance electrochemical devices. Herein, we report three-dimensional Co network-supported Co3O4 nanoflake arrays by a facile electrodeposition and following hydrothermal process. 3D Co networks with porous branches and interconnected pores are well formed and used as the skeleton for the growth of porous Co3O4 nanoflake arrays. High porosity and integrated growth are combined in the composite electrode. As an anode material for lithium ion batteries, the Co network-supported Co3O4 nanoflake array electrode exhibits a high first discharge capacity (1164 mAh g−1 at 0.5 A g−1), good cycling stability (714 mAh g−1 after 100 cycles) and enhanced rate capability. The proposed method is useful for the construction of other porous metal/metal oxide composite films for application in electrochemical energy storage and catalysis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.