254
Views
1
CrossRef citations to date
0
Altmetric
Articles

The Choice of Normal-Theory Weight Matrix When Computing Robust Standard Errors in Confirmatory Factor Analysis

&
 

Abstract

Robust standard errors are of central importance in confirmatory factor models. In calculating these statistics a central ingredient is the inverse of the asymptotic covariance matrix of second-order moments calculated under the assumption of normality. Currently, two ways of estimating this matrix are employed in software packages. One approach uses the sample covariance matrix, the other the model-implied covariance matrix. Previous research based on a small confirmatory factor model demonstrated that the latter approach yielded a slight improvement in standard error performance. The present study argues theoretically that the discrepancy between the two approaches increases in models where there are few model parameters relative to p(p+1)/2, where p is the number of observed variables. We present simulation results that support this claim, in both small and large correctly specified models, across a large variety of non-normal conditions. We recommend the model-implied covariance matrix for robust standard error computation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.