22
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Effects of Trientine, a Metal Chelator, on Defective Endothelium-dependent Relaxation in the Mesenteric Vasculature of Diabetic Rats

, &
Pages 1091-1099 | Published online: 07 Jul 2009
 

Abstract

Diabetes mellitus compromises endothelium-dependent relaxation of blood vessels. This has been linked to the generation of reactive oxygen species (ROS), which neutralise nitric oxide (NO) and interfere with vasodilator function. Experiments using chelators have emphasised the importance of ROS produced by transition metal catalysed reactions. However, particularly for the small arteries and arterioles that control microcirculatory blood flow, NO is not the only endothelium-derived mediator; endothelium-derived hyperpolarizing factor (EDHF) has a major role. EDHF-mediated vasodilation is severely curtailed by diabetes; however, little information exists on the underlying pathophysiology. Deficits in the EDHF system, alone or in combination with the NO system, are crucial for the development of diabetic microvascular complications. To further elucidate the mechanisms involved, the aim was to examine the effects of diabetes and preventive and intervention chelator therapy with trientine on a preparation that has well-defined NO and EDHF-mediated responses, the rat mesenteric vascular bed. In phenylephrine-preconstricted preparations, maximum vasodilation to acetylcholine was reduced by 35 and 44% after 4 and 8 weeks of streptozotocin-induced diabetes, respectively. Trientine treatment over the first 4 weeks gave 72% protection; intervention therapy over the final 4 weeks prevented deterioration and corrected the initial deficit by 68%. These responses depend on both NO and EDHF. When the latter mechanism was isolated by NO synthase inhibition, diabetic deficits of 53.4 (4 weeks) and 65.4% (8 weeks) were revealed, that were 65% prevented and 50% corrected by trientine treatment. Neither diabetes nor trientine altered vascular smooth muscle responses to the NO donor, sodium nitroprusside (SNP). Thus, the data suggest that metal catalysed ROS production makes a substantial contribution to defects in both the EDHF and NO endothelial mechanisms in diabetes, which has therapeutic implications for microvascular complications.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.