42
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Cholesterol, Linoleic Acid or/and Tyrosine Yield Different Spectra of Products when Oxidized Alone or in a Mixture: Studies in Various Oxidative Systems

, , &
Pages 1277-1288 | Received 19 Mar 2003, Accepted 27 Jun 2003, Published online: 07 Jul 2009
 

Abstract

Identification of reliable biomarkers for oxidative stress for the prediction of the early development of pathological conditions is essential. The detection of biomarkers for oxidative stress such as degradation products of polyunsaturated fatty acid (PUFA), oxysterols, and oxidized proteins, as indicators of oxidative stress are in use, but suffers from insufficient specificity, accuracy and reliability. The overall aim of the present study was to develop new markers which will not only provide information about the presence and level of oxidative stress in biological systems but also on the type of reactive oxygen species (ROS) involved and their metabolic consequences. In the first stage of the study, we compared the level and type of oxidized products formed when different ROS were applied onto three major biomolecules, i.e. cholesterol, linoleic acid (LH) and tyrosine, representing sterols, PUFA and protein, when each compounds was exposed alone or in a mixture to the ROS [copper ions, 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH) and hypochlorous acid (HOCl)]. It was found that different types of oxidants resulted in the formation of different types of oxidation products. Furthermore, oxidation pattern differs when the substrates (cholesterol, PUFA or amino acid) were present alone or in a mixture. As biological systems such as lipoproteins and cell membranes are composed of the above studied molecules, the need for simultaneous detection of the major oxidized products is requires for better characterization of the oxidative stress outcome.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.