151
Views
73
CrossRef citations to date
0
Altmetric
Original Article

Enhancement of quinone redox cycling by ascorbate induces a caspase-3 independent cell death in human leukaemia cells. An in vitro comparative study

, , , , &
Pages 649-657 | Received 09 Nov 2004, Published online: 07 Jul 2009
 

Abstract

Since the higher redox potential of quinone molecules has been correlated with enhanced cellular deleterious effects, we studied the ability of the association of ascorbate with several quinones derivatives (having different redox potentials) to cause cell death in K562 human leukaemia cell line. The rationale is that the reduction of quinone by ascorbate should be dependent of the quinone half-redox potential thus determining if reactive oxygen species (ROS) are formed or not, leading ultimately to cell death or cell survival. Among different ROS that may be formed during redox cycling between ascorbate and the quinone, the use of different antioxidant compounds (mannitol, desferal, N-acetylcysteine, catalase and superoxide dismutase) led to support H2O2 as the main oxidizing agent. We observed that standard redox potentials, oxygen uptake, free ascorbyl radical formation and cell survival were linked. The oxidative stress induced by the mixture of ascorbate and the different quinones decreases cellular contents of ATP and GSH while caspase-3-like activity remains unchanged. Again, we observed that quinones having higher values of half-redox potential provoke a severe depletion of ATP and GSH when they were associated with ascorbate. Such a drop in ATP content may explain the lack of activation of caspase-3. In conclusion, our results indicate that the cytotoxicity of the association quinone/ascorbate on K562 cancer cells may be predicted on the basis of half-redox potentials of quinones.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.