109
Views
20
CrossRef citations to date
0
Altmetric
Original

Free radicals in exhaled breath condensate in cystic fibrosis and healthy subjects

, , , , , , , , & show all
Pages 901-909 | Received 30 Nov 2005, Published online: 07 Jul 2009
 

Abstract

Many markers of airway inflammation and oxidative stress can be measured non-invasively in exhaled breath condensate (EBC). However, no attempt has been made to directly detect free radicals using electron paramagnetic resonance (EPR) spectroscopy. Condensate was collected in 14 children with cystic fibrosis (CF) and seven healthy subjects. Free radicals were trapped by 5,5-dimethyl-1-pyrroline-N-oxide. EPR spectra were recorded using a Bruker EMX® spectrometer. Secondly, to study the source of oxygen centered radical formation, catalase or hydrogen peroxide was added to the condensate. Radicals were detected in 18 out of 21 condensate samples. Analysis of spectra indicated that both oxygen and carbon centered radicals were trapped. Within-subject reproducibility was good in all but one subject. Quantitatively, there was a trend towards higher maximal peak heights of both oxygen and carbon centered radicals in the children with CF. Catalase completely suppressed the signals in condensate. Addition of hydrogen peroxide resulted in increased radical signal intensity. Detection of free radicals in EBC of children with CF and healthy subjects is feasible using EPR spectroscopy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.