2,101
Views
250
CrossRef citations to date
0
Altmetric
Original

Theories of biological aging: Genes, proteins, and free radicals

Pages 1230-1238 | Received 15 Jun 2006, Published online: 07 Jul 2009
 

Abstract

Traditional categorization of theories of aging into programmed and stochastic ones is outdated and obsolete. Biological aging is considered to occur mainly during the period of survival beyond the natural or essential lifespan (ELS) in Darwinian terms. Organisms survive to achieve ELS by virtue of genetically determined longevity assuring maintenance and repair systems (MRS). Aging at the molecular level is characterized by the progressive accumulation of molecular damage caused by environmental and metabolically generated free radicals, by spontaneous errors in biochemical reactions, and by nutritional components. Damages in the MRS and other pathways lead to age-related failure of MRS, molecular heterogeneity, cellular dysfunctioning, reduced stress tolerance, diseases and ultimate death. A unified theory of biological aging in terms of failure of homeodynamics comprising of MRS, and involving genes, milieu and chance, is acquiring a definitive shape and wider acceptance. Such a theory also establishes the basis for testing and developing effective means of intervention, prevention and modulation of aging.

Abbreviations
FR=

free radicals

ROS=

reactive oxygen species

ELS=

essential lifespan

Abbreviations
FR=

free radicals

ROS=

reactive oxygen species

ELS=

essential lifespan

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.