155
Views
14
CrossRef citations to date
0
Altmetric
Original

A high-throughput reporter gene assay to prove the ability of natural compounds to modulate glutathione peroxidase, superoxide dismutase and catalase gene promoters in V79 cells

, , , , , & show all
Pages 746-753 | Received 03 Jun 2008, Published online: 07 Jul 2009
 

Abstract

The aim of the study was to establish a 96-well microtiter plate-based reporter gene assay to test the influence of natural compounds on the promoter activities of rat catalase, human glutathione peroxidase and human superoxide dismutase expressed in V79 cells. Luciferase expression vectors with the promoter regions of the genes coding for the three above-mentioned enzymes were constructed and transfected into V79 cells. Thereafter the ability of sodium ascorbate, L-carnitine, catechin, epigallocatechin gallate, genistein, paraquat, quercetin, 12-O-tetradecanoylphorbol-13-acetate and Trolox to enhance the promoter activities was evaluated. Genistein, paraquat and quercetin led to a statistically significant increase in the glutathione peroxidase and superoxide dismutase gene promoter activities. None of the compounds tested enhanced the catalase gene promoter activity. The reporter gene assay described in this report is easy to perform, fast and allows one to test a high number of compounds and different concentrations of a single compound at the same time.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.