138
Views
13
CrossRef citations to date
0
Altmetric
Original

Differential effects of retinol and retinoic acid on cell proliferation: A role for reactive species and redox-dependent mechanisms in retinol supplementation

, &
Pages 778-788 | Received 17 Jun 2008, Published online: 07 Jul 2009
 

Abstract

While some authors suggest that retinoids are potential anti-proliferative and antioxidant agents, evidence has suggested those present pro-oxidant properties, which might lead to malignant proliferation. These discordances stimulated one to investigate the proliferative/anti-proliferative properties of two major retinoids, retinol (ROH) and retinoic acid (RA). In Sertoli cells, ROH increased proliferation while RA was anti-proliferative. ROH increased DNA synthesis, decreased p21 levels and induced cell cycle progression. ROH increased reactive species (RS) production and stimulated p38, JNK1/2 and ERK1/2 MAPKs activation. Antioxidant treatment with Trolox blocked ROH-induced RS production, MAPKs activation and proliferation; MAPKs inhibition blocked proliferation. The potential sites of RS indicate that ROH-induced RS is promoted via mitochondria and xanthine oxidase. In contrast, RA induced neither RS production nor MAPKs activation. RA decreased DNA synthesis and increased p21 leading to cell arrest. Overall, data show that ROH, but not RA, is able to induce proliferation through non-classical and redox-dependent mechanisms.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.