175
Views
37
CrossRef citations to date
0
Altmetric
Original

Regulation of Bcl-2 phosphorylation in response to oxidative stress in cardiac myocytes

, , &
Pages 809-816 | Received 22 Feb 2009, Published online: 01 Sep 2009
 

Abstract

Oxidative stress promotes cardiac myocyte death and has been implicated in the pathogenesis of many cardiovascular diseases. Bcl-2 family proteins are key regulators of the apoptotic response, while their functions can be regulated by post-transcriptional modifications including phosphorylation, dimerization or proteolytic cleavage. This study used adult cardiac myocytes to test the hypothesis that activation of specific kinase signalling pathways by oxidative stress may modulate either the expression or the phosphorylation of Bcl-2, with the resulting effect of a decrease or increase in its anti-apoptotic function. Stimulation of cardiac myocytes with 0.2 mM H2O2, which induces apoptosis, resulted in a marked down-regulation of Bcl-2 protein simultaneously with an increase in its phosphorylation. Inhibition of p38-MAPK resulted in attenuation of Bcl-2 phosphorylation, whereas inhibition of ERK1/2, JNKs or PI-3-K had no effect. These data suggest that activation of p38 MAPK by oxidative stress results in the phosphorylation and degradation of Bcl-2 and the inactivation of its anti-apoptotic activity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.