382
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Impact of Nrf2 on tumour growth and drug sensitivity in oncogenic K-ras-transformed cells in vitro and in vivo

ORCID Icon, , , , , , , & show all
Pages 661-671 | Received 03 Jan 2018, Accepted 04 Apr 2018, Published online: 03 May 2018
 

Abstract

K-ras is one of the most common oncogenes in human cancers, and its aberrant activation may lead to malignant transformation associated with oxidative stress and activation of the transcription factor Nrf2 that regulates multiple detoxification enzymes. The purpose of this research was to use gene editing technology to evaluate the role of Nrf2 in affecting tumour growth and drug sensitivity of K-rasG12V-transformed cells. We showed that induction of K-rasG12V caused a significant activation of Nrf2 associated with increased expression of its target genes NAD(P)H:quinone oxidoreductase 1 (NQO1) and haem oxygenase-1 (HO-1). Interestingly, knock-out of Nrf2 by CRISPR/Cas9 in K-rasG12V-expressing cells only impacted the expression of NQO1 but not HO-1. We also found that Nrf2 knock-out caused high reactive oxygen species (ROS) stress, suppression of cell proliferation, increased apoptosis in vitro, and a decrease of tumour growth in vivo. Furthermore, abrogation of Nrf2 significantly increased the sensitivity of K-rasG12V cells to multiple anticancer agents including phenethyl isothiocyanate (PEITC), doxorubicin, etoposide, and cisplatin. These results show that genetic abrogation of Nrf2 impairs the malignant phenotype of K-RasG12V-transformed cells in vitro and in vivo, and demonstrates the critical role of Nrf2 in promoting cell survival and drug resistance in cells harbouring oncogenic K-ras. As such, inhibition of Nrf2 would be an attractive strategy to increase the therapeutic effect and overcome drug resistance in cancer with oncogenic K-ras activation.

Acknowledgments

The authors are grateful to Dr F. Zhang and Dr D. Trono for providing plasmids through Addgene.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported in part by grants from the National Natural Science Foundation of China [No. 81430060], Guangzhou Technology Innovation Research Program [No. 201508020250; No. 201504010038; No. LCY201317].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.