116
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Biologically and chemically important hydrazino-containing imidazolines as antioxidant agents

, &
Pages 685-697 | Received 06 Feb 2018, Accepted 11 Apr 2018, Published online: 24 May 2018
 

Abstract

Biologically and chemically useful hydrazinoimidazolines were evaluated as antioxidant and antihaemolytic agents. 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH), galvinoxyl radical (GOR), nitric oxide (NO) and hydrogen peroxide (H2O2) scavenging assays, ferric ions reducing power assay, and ex vivo model of rat erythrocytes exposed to 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AAPH) or H2O2 were used. The most potent DPPH scavengers proved to be hydrazinoimidazolines 3, 2, and 4, revealing excellent antiradical effects – superior or comparable to that of all antioxidant standards used. Moreover, these molecules showed strong NO neutralising potencies – better to that of ascorbic acid (AA) (3), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) (3 and 2), butylated hydroxytoluene (BHT) (3 and 2), and butylated hydroxyanisole (BHA) (3, 2, and 4). Compound 4 was also effective in GOR scavenging. The excellent scavenger of GOR, NO, and H2O2 proved to be structure 5, with the potency superior or comparable to the majority of antioxidant standards used. In turn, compound 9 was effective in H2O2 and GOR neutralisation. All hydrazinoimidazolines revealed the reducing power that is higher than BHT. Moreover, the protective effects of most test compounds on oxidatively stressed erythrocytes were observed. Some structure–activity relationships were disclosed. A significance of the primary hydrazino group on antioxidant effects was confirmed. The most likely DPPH and GOR scavenging mechanisms for test compounds were propound. Among all the investigated molecules, hydrazinoimidazolines 5, 3, 2, 4, and 9, due to their excellent or good antiradical activities, can represent promising antioxidant candidates with prospective utility for prevention of diseases related to reactive oxygen/nitrogen species.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was supported by the Statutory Funds of the Medical University of Lublin, Poland [Grant Number DS 213].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.