207
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Growth differentiation factor 11 mitigates cardiac radiotoxicity via activating AMPKα

, , , , &
Pages 176-185 | Received 12 Nov 2020, Accepted 29 Jan 2021, Published online: 19 Feb 2021
 

Abstract

Cardiac radiotoxicity largely impedes the therapeutic benefits of radiotherapy to malignancies. Growth differentiation factor 11 (GDF11) is implicated in the pathogenesis of cardiac diseases under different pathological conditions. This study aims to investigate the role and underlying mechanisms of GDF11 on cardiac radiotoxicity. Mice were injected with cardiotropic adeno-associated virus 9 carrying the full-length mouse GDF11 gene or negative control under a cTnT promoter from the tail vein, and then received a single dose of 20 Gray (Gy) whole-heart irradiation (WHI) for 16 weeks to imitate cardiac radiotoxicity. Compound C (CC, 20 mg/kg) was intraperitoneally injected every two days at 1 week before WHI stimulation to inhibit 5′ AMP-activated protein kinase α (AMPKα). Cardiac GDF11 expression was significantly suppressed at both the protein and mRNA levels. GDF11 overexpression decreased oxidative stress, apoptosis, and fibrosis in radiated hearts, thereby mitigating cardiac radiotoxicity, and dysfunction. Further detection revealed that GDF11 activated AMPKα to reduce radiation-induced oxidative damage and that AMPKα inhibition by CC offset the cardioprotective effects by GDF11. GDF11 mitigates cardiac radiotoxicity via activating AMPKα and it is a promising candidate to treat cardiac radiotoxicity.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

All data that support the findings in this study are available from the corresponding author upon reasonable request.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.