791
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

The mitochondrial antioxidant SS-31 attenuated lipopolysaccharide-induced apoptosis and pyroptosis of nucleus pulposus cells via scavenging mitochondrial ROS and maintaining the stability of mitochondrial dynamics

, , , , , , & show all
Pages 1080-1093 | Received 25 Oct 2021, Accepted 09 Dec 2021, Published online: 22 Dec 2021
 

Abstract

Evidence has shown that effects from inflammation and mitochondrial dysfunction lead to pyroptosis and apoptosis of nucleus pulposus (NP) cells. Damaged mitochondria release dangerous molecules such as reactive oxygen species (ROS), activating the NLRP3 inflammasome. SS-31 is a mitochondria-targeting peptide that has been used in the treatment of many diseases by scavenging ROS and ameliorating mitochondrial function. This study found that SS-31 ameliorated lipopolysaccharide (LPS)-induced loss of cell viability, ROS production, and apoptosis in NP cells. Moreover, mitochondrial dynamics and ATP synthesis were restored on pretreatment with SS-31 compared with the LPS group. For the molecular mechanism research, SS-31 stabilized mitochondrial morphology and inhibited the activation of the NF-κB pathway and the activation of the NLRP3 inflammasome. To evaluate whether the inhibition of NLRP3 inflammasome activation by SS-31 is dependent on the clearance of mitochondrial ROS, we comparatively analyzed the activation of NLRP3 inflammasome in NP cells pretreated with SS-31 and the ROS scavenger N-acetyl-L-cysteine (NAC). The results indicate that SS-31 could inhibit NLRP3 inflammasome activation by limiting the production of mitochondrial ROS. To sum up, our results revealed that SS-31 inhibits LPS-induced apoptosis, pyroptosis, and inflammation in NP cells via scavenging ROS and maintaining the stability of mitochondrial dynamics, which could be considered a promising therapeutic intervention for disk degeneration.

Acknowledgments

The authors are very grateful for the experimental technical support provided by Southeast University School of Medicine.

Disclosure statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [Grant No. 81871810, 81702201]; Natural Science Foundation of Jiangsu Province: Grant No. BK20170701; Medical Research Foundation of Jiangsu Provincial Health and Family Planning Commission: Grant No. H201533.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.