34
Views
6
CrossRef citations to date
0
Altmetric
Original

Rho and ROCK Signaling in VEGF-Induced Microvascular Endothelial Hyperpermeability

, , , &
Pages 237-247 | Received 29 Aug 2005, Accepted 07 Dec 2005, Published online: 10 Jul 2009
 

Abstract

Objectives: Vascular endothelial growth factor (VEGF) plays an important role in the regulation of microvascular permeability under various physiological and pathological conditions. The authors tested the hypothesis that the small GTPase Rho and its downstream effector ROCK (Rho-associated coiled-coil-containing protein kinase) mediate VEGF-induced increases in venular permeability. They also investigated myosin light chain (MLC) phosphorylation and actin polymerization, two well-characterized targets of the Rho-ROCK pathway that are implicated in the regulation of endothelial barrier function.

Methods: The apparent permeability coefficient of albumin (Pa) was measured in intact isolated porcine coronary venules and in cultured coronary venular endothelial cell (CVEC) monolayers. RhoA activation was determined using a Rhotekin-agarose pull down assay. MLC phosphorylation was evaluated by immunoblotting with phospho-specific antibodies, and endothelial cellular F-actin was viewed using fluorescence microscopy.

Results: VEGF increased Pa in both isolated coronary venules and CVEC monolayers. The hyperpermeability response occurred in a similar time course to that of Rho activation, MLC phosphorylation, and actin stress fiber formation. Selective blockage of ROCK with Y27632 dose-dependently inhibited VEGF-induced venular hyperpermeability. Moreover, inhibition of either Rho with exoenzyme C3 or ROCK with Y-27632 attenuated VEGF-induced increases in permeability, MLC phosphorylation, and actin-stress fiber formation in CVEC monolayers.

Conclusions: Collectively, these findings suggest that the Rho–ROCK signal pathway contributes to VEGF-induced hyperpermeability. Myosin light-chain phosphorylation and actin stress fiber formation occur concomitantly with the increase in permeability upon VEGF stimulation.

This work was supported by National Institutes of Health grants R01 HL-73324 (MHW), R01 HL-61507 (SYY), and R01 HL-70752 (SYY). Dr. Breslin was supported by NIH fellowship F32 HL-76079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.