15
Views
0
CrossRef citations to date
0
Altmetric
Articles

Blood Flow in Snake Infrared Organs: Response-Induced Changes in Individual Vessels

, , , &
Pages 99-110 | Received 28 Apr 2006, Accepted 27 Jul 2006, Published online: 10 Jul 2009
 

Abstract

Objective: In the past the microkinetics of blood flow in the infrared pit organs of pit vipers has been studied with Doppler flowmetry using various infrared stimuli such as a human hand or soldering iron at various distances, lasers of various wavelengths, etc. Quick-acting variations in blood flow were recorded, and interpreted as a cooling mechanism for avoiding afterimage in the infrared receptors. However, the Doppler measurements provided only the summation of blood flow in a number of vessels covered by the sensing probe, but did not give data on flow in individual vessels.

Methods: In the present work the authors introduced into the bloodstream of Gloydius and Trimeresurus pit vipers fluorescent microspheres labeled with fluorescein isothiocyanate (FITC) contained in a solution of FITC-dextran in physiological saline. They observed the passage of the microspheres through individual pit organ vessels with a fluorescent microscope to which was attached a high-speed video camera and image intensifier. Output of the camera was recorded before, during, and after stimulus with a 810-nm diode laser. Recording was done at 250 frames/s on high-speed video apparatus and downloaded to a hard disk. Disk files were loaded into proprietary software and particles were tracked and average velocities calculated. The data were then tested for significance by ANOVA with post hoc tests.

Results: A significant (p < .05) increase in blood velocity was found at the focal point of the stimulus laser, but not anywhere removed from this point. Proximal severing of the pit sensory nerves caused degeneration of the pit receptor terminals and abolished stimulus-induced blood flow changes, but did not affect normal blood flow.

Conclusions: The authors conclude that the receptors themselves are directly and locally controlling the smooth muscle elements of the blood vessels, in response to heating of the receptors by infrared radiation. They speculate that the heavy vascularization constitutes a cooling system for the radiation-encoding receptors, and further that the agent of control may be a volatile neuromediator such as nitric oxide.

We express our sincere gratitude to Miki Kobayashi for her able technical assistance in preparing the illustrations. We also thank Masahiko Nishimura of Habu Research Laboratory, Prefectural Health and Environmental Research Bureau, Okinawa, for facilitating the acquisition of Trimeresurus elegans specimens.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.