13
Views
1
CrossRef citations to date
0
Altmetric
Articles

Nitric Oxide Bioavailability in the Microcirculation: Insights from Mathematical Models

Pages 813-834 | Received 12 Nov 2007, Published online: 10 Jul 2009
 

Abstract

Over the last 30 years nitric oxide (NO) has emerged as a key signaling molecule involved in a number of physiological functions, including in the regulation of microcirculatory tone. Despite significant scientific contributions, fundamental questions about NO's role in the microcirculation remain unanswered. Mathematical modeling can assist in investigations of microcirculatory NO physiology and address experimental limitations in quantifying vascular NO concentrations. The number of mathematical models investigating the fate of NO in the vasculature has increased over the last few years, and new models are continuously emerging, incorporating an increasing level of complexity and detail. Models investigate mechanisms that affect NO availability in health and disease. They examine the significance of NO release from nonendothelial sources, the effect of transient release, and the complex interaction of NO with other substances, such as heme-containing proteins and reactive oxygen species. Models are utilized to test and generate hypotheses for the mechanisms that regulate NO-dependent signaling in the microcirculation.

Acknowledgements

NmT was supported by a grant from the American Heart Association (NSDG 0435067).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.