527
Views
32
CrossRef citations to date
0
Altmetric
Articles

Investigating the Effects of Peripheral Electrical Stimulation on Corticomuscular Functional Connectivity Stroke Survivors

, , , , &
 

Abstract

Background: Electrical stimulation (ES) in the periphery can induce brain plasticity and has been used clinically to promote motor recovery in patients with central nervous system lesion. Electroencephalogram (EEG) and electromyogram (EMG) are readily applicable in clinical settings and can detect real-time functional connectivity between motor cortex and muscles with EEG–EMG (corticomuscular) coherence.

Objective: The purpose of this study was to determine whether EEG–EMG coherence can detect changes in corticomuscular control induced by peripheral ES.

Methods: Fifteen healthy young adults and 15 stroke survivors received 40-min electrical stimulation session on median nerve. The stimulation (1-ms rectangular pulse, 100 Hz) was delivered with a 20-s on–20-s off cycle, and the intensity was set at the subjects’ highest tolerable level without muscle contraction or pain. Both before and after the stimulation session, subjects performed a 20-s steady-hold thumb flexion at 50% maximal voluntary contraction (MVC) while EEG and EMG were collected.

Results: Our results demonstrated that after ES, EEG–EMG coherence in gamma band increased significantly for 22.1 and 48.6% in healthy adults and stroke survivors, respectively. In addition, after ES, force steadiness was also improved in both groups, as indicated by the decrease in force fluctuation during steady-hold contraction (−1.7% MVC and −3.9%MVC for healthy and stroke individuals, respectively).

Conclusions: Our results demonstrated that EEG–EMG coherence can detect ES-induced changes in the neuromuscular system. Also, because gamma coherence is linked to afferent inputs encoding, improvement in motor performance is likely related to ES-elicited strong sensory input and enhanced sensorimotor integration.

Acknowledgement

The authors would like to thank Dr Chia-Feng Lu for his assistance in coherence analysis.

Funding

This work was supported by a grant from Ministry of Education, Aim for the Top University Plan; Ministry of Science and Technology of Taiwan [grant number NSC102-2314-B-010–002].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.