107
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Endothelin-1 Up-Regulates p115RhoGEF in Embryonic Rat Cardiomyocytes During the Hypertrophic Response

, , , , , , & show all
Pages 265-283 | Published online: 20 Oct 2008
 

Abstract

In cardiomyocytes, certain extracellular stimuli that activate heterotrimeric G protein-coupled receptors (GPCRs) can induce hypertrophy by regulating gene expression and increasing protein synthesis. We investigated if rat embryonic cardiomyocytes (H9c2) underwent variations in the expression levels and subcellular distribution of key components of GPCR-activated signaling pathways during endothelin-1 (ET-1)-induced hypertrophic response. A significant increase of p115RhoGEF protein level was evident in ET-1-treated cells. Real-time quantitative PCR showed RhoGEF mRNA levels were significantly increased. Inhibition of the Rho-associated kinase (ROCK) caused a significant decrease of p115RhoGEF protein in the nuclear fraction, whereas an inhibitor of PKC induced a redistribution of the protein between membrane/organelle and nuclear fractions. The ROCK inhibitor also decreased H9c2 cell hypertrophic response. These results indicate that ROCK and its downstream target molecules, which are involved in inducing the hypertrophic response, are also implicated in signaling the up-regulation of the p115RhoGEF protein.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.