222
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A bioluminescence resonance energy transfer 2 (BRET2) assay for monitoring seven transmembrane receptor and insulin receptor crosstalk

, , , , &
Pages 590-599 | Received 12 Jul 2017, Accepted 15 Aug 2017, Published online: 30 Aug 2017
 

Abstract

The angiotensin AT1 receptor is a seven transmembrane (7TM) receptor, which mediates the regulation of blood pressure. Activation of angiotensin AT1 receptor may lead to impaired insulin signaling indicating crosstalk between angiotensin AT1 receptor and insulin receptor signaling pathways. To elucidate the molecular mechanisms behind this crosstalk, we applied the BRET2 technique to monitor the effect of angiotensin II on the interaction between Rluc8 tagged insulin receptor and GFP2 tagged insulin receptor substrates 1, 4, 5 (IRS1, IRS4, IRS5) and Src homology 2 domain-containing protein (Shc). We demonstrate that angiotensin II reduces the interaction between insulin receptor and IRS1 and IRS4, respectively, while the interaction with Shc is unaffected, and this effect is dependent on Gαq activation. Activation of other Gαq-coupled 7TM receptors led to a similar reduction in insulin receptor and IRS4 interactions whereas Gαs- and Gαi-coupled 7TM receptors had no effect. Furthermore, we used a panel of kinase inhibitors to show that angiotensin II engages different pathways when regulating insulin receptor interactions with IRS1 and IRS4. Angiotensin II inhibited the interaction between insulin receptor and IRS1 through activation of ERK1/2, while the interaction between insulin receptor and IRS4 was partially inhibited through protein kinase C dependent mechanisms. We conclude that the crosstalk between angiotensin AT1 receptor and insulin receptor signaling shows a high degree of specificity, and involves Gαq protein, and activation of distinct kinases. Thus, the BRET2 technique can be used as a platform for studying molecular mechanisms of crosstalk between insulin receptor and 7TM receptors.

Disclosure statement

The authors have read the journal’s policy and have the following conflicts. J.L.H., S.J.S., R.J. and N.K. are employees of Novo Nordisk and own stocks in Novo Nordisk. C.L. is an employee of ALK-Abelló. This does not alter the authors’ adherence to all the policies of Journal of Receptors and Signal Transduction on sharing data and materials.

Additional information

Funding

This work was supported by A.P. Møller Foundation (A.P. Møller og Hustru Chastine Mc-Kinney Møller Fond til almene Formaal).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.