217
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Zerumbone binding to estrogen receptors: an in-silico investigation

, ORCID Icon, , &
Pages 342-351 | Received 23 Nov 2017, Accepted 21 Aug 2018, Published online: 05 Nov 2018
 

Abstract

Breast cancer is the most frequent malignancy among females worldwide. Estrogen receptor (ER) mediate important pathophysiological signaling pathways induced by estrogens, and is regarded as a promising target for the treatment of breast cancer. Zerumbone (2,6,9,9-tetramethylcycloundeca-2,6,10-trien-1-one; ZER), a chemical constituent present in the Zingiber zerumbet is known to exhibit anti-breast cancer activity by modulating several proteins to induce apoptosis. Medicinal chemists usually exploit lead compounds of natural origin to develop molecules with improved pharmacological properties. Current study is intended to utilize molecular modeling techniques to investigate the interaction of ZER with estrogen receptors. AutoDock was used to predict the binding modes of ZER and target receptors. Stability of the ZER-ER complex was verified by molecular dynamics simulation using Desmond software. Docked ZER was further optimized by density functional theory (DFT) using Gaussian09 program. Analysis of docked conformations in terms of binding energy disclosed estrogen receptor-β (ERβ) as more promising than estrogen receptor-α (ERα). Evaluation of MD trajectories of ZER bound to both ERα and ERβ showed appreciable stability with minimum Cα-atom root mean square deviation shifts. DFT based global reactivity descriptors such as electron affinity, hardness, chemical potential, electronegativity and electrophilicity index, calculated from the energies of highest occupied and lowest unoccupied molecular orbitals underscored the electronic features governing viability of the ZER for interaction with the target receptors. In conclusion, these findings can be exploited to design and develop novel anticancer agents based on the lead compound, ZER.

Disclosure statement

No potential conflict of interest was reported by the authors

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.