173
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Pretreatment of bone mesenchymal stem cells with miR181-c facilitates craniofacial defect reconstruction via activating AMPK-Mfn1 signaling pathways

, &
Pages 199-207 | Received 26 Mar 2019, Accepted 28 Jul 2019, Published online: 30 Aug 2019
 

Abstract

Context: Bone mesenchymal stem cells (BMSC)-based regenerative therapy is critical for the craniofacial defect reconstruction. However, oxidative stress micro-environment after transplantation limits the therapeutic efficiency of BMSC. The miR-181c has been found to be associated with cell survival and proliferation.

Objective: Herein, we investigated whether prior miR-181c treatment promoted BMSC proliferation and survival under oxidative stress injury.

Materials and methods: Cells were treated with hydrogen peroxide (H2O2) and then cell viability was determined via MTT assay, TUNEL staining and ELISA. Western blotting and immunofluorescence assay were used to detect those alterations of mitochondrial function.

Results: H2O2 treatment reduced BMSC viability and this effect could be reversed via additional supplementation of miR181-c. Mechanistically, oxidative stress increased cell apoptosis, augmented caspase-3 activity, promoted reactive oxygen species (ROS) synthesis, impaired mitochondrial potential, and induced mitochondrial dynamics imbalance. However, miR-181c pretreatment reversed these effects of oxidative stress on BMSC. Moreover, miR-181c treatment improved BMSC proliferation, migration and paracrine, which are very important for craniofacial reconstruction. In addition, we identified that AMPK-Mfn1 axis was the direct targets of miR-181c in BMSC. Mfn1 silencing impaired the protective effects miR-181c on BMSC viability and proliferation under oxidative stress environment.

Conclusions: Collectively, our results indicate that miR-181c participates in oxidative stress-mediated BMSC damage by modulating the AMPK-Mfn1 signaling pathway, suggesting miR-181c-AMPK-Mfn1 axis may serves as novel therapeutic targets to facilitate craniofacial defect reconstruction.

Disclosure statement

The authors declare that they have no competing interests.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.