162
Views
26
CrossRef citations to date
0
Altmetric
Research Articles

Ripk3 mediates cardiomyocyte necrosis through targeting mitochondria and the JNK-Bnip3 pathway under hypoxia-reoxygenation injury

&
Pages 331-340 | Received 26 Aug 2019, Accepted 01 Oct 2019, Published online: 28 Oct 2019
 

Abstract

Context: Cardiomyocyte necrosis following myocardial infarction drastically the progression of heart failure.

Objective: In the current study, we explored the upstream mediator for cardiomyocytes necrosis induced by hypoxia-reoxygenation (HR) injury with a focus on mitochondrial function and JNK-Bnip3 pathway.

Materials and methods: Cell necrosis was determined via MTT assay, TUNEL staining and PI staining. siRNA transfection was performed to inhibit Ripk3 activation in response to HR injury. Pathway blocker was applied to prevent JNK activation.

Results: Ripk3 was rapidly increased in HR-treated cardiomyocytes and correlated with the necrosis of cardiomyocytes. Interestingly, silencing of Ripk3 attenuated HR-mediated cardiomyocytes necrosis. At the molecular levels, Ripk3 deletion sustained mitochondrial bioenergetics and stabilized mitochondrial glucose metabolism. Besides, Ripk3 deletion also reduced mitochondrial oxidative stress and inhibited mPTP opening. To the end, we found Ripk3 activation was along with JNK pathway activation and Bnip3 upregulation. Interestingly, blockade of JNK pathway abolished the harmful effects of HR injury on mitochondrial function, energy metabolism and redox balance. Moreover, overexpression of Bnip3 abrogated the protection action played by Ripk3 deletion on cardiomyocytes survival.

Conclusions: Taken together, these data may identify Ripk3 upregulation, mitochondrial dysfunction and JNK-Bnip3 axis activation as the novel mechanisms underlying cardiomyocytes necrosis achieved by HR injury. Thereby, approaches targeted to the Ripk3-JNK-Bnip3-mitochondria cascade have the potential to ameliorate the progression of HR-related cardiomyocytes necrosis in the clinical practice.

Author contributions

T.C.L. and S.X.Y. conceived the research; S.X.Y. performed the experiments; all authors participated in discussing and revising the manuscript.

Disclosure statement

The authors have declared that they have no conflicts of interest.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.