99
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

ERK1/2-PPARγ pathway is involved in Chlamydia pneumonia-induced human umbilical vein endothelial cell apoptosis through increased LOX-1 expression

, , , , , , & show all
Pages 126-132 | Received 29 Oct 2019, Accepted 18 Jan 2020, Published online: 31 Jan 2020
 

Abstract

Chlamydia pneumonia (C.pn) is a common respiratory pathogen that is involved in human cardiovascular diseases and promotes the development of atherosclerosis in hyperlipidemic animal models. C.pn reportedly up-regulated lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in endothelial cells. Recently, the anti-atherosclerotic activity of peroxisome proliferator-activated receptor γ (PPARγ) has been documented. In the present study, we investigated the effect of C.pn on LOX-1 expression in human umbilical vein endothelial cells (HUVECs) and identified the involvement of the PPARγ signaling pathway therein. The results showed that C.pn increased the expression of LOX-1 in HUVECs in a dose- and time-dependent manner. C.pn-induced up-regulation of LOX-1 was mediated by ERK1/2, whereas p38 MAPK and JNK had no effect on this process. C.pn induced apoptosis, inhibited cell proliferation, and decreased the expression PPARγ in HUVECs. Additionally, LOX-1 activity and cell injury caused by C.pn through activation of ERK1/2 was completely inhibited by rosiglitazone, a PPARγ agonist. In conclusion, we inferred that activation of PPARγ in HUVECs suppressed C.pn-induced LOX-1 expression and cell damage by inhibiting ERK1/2 signaling.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by Financial Grant from the Postdoctoral Science Foundation of the Central Hospital of Wuhan [YB16A04] and the Health and Family Planning Commission of Wuhan, China [WX16B06].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.