50
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Lead optimization of 4-(thio)-chromenone 6-O-sulfamate analogs using QSAR, molecular docking and DFT – a combined approach as steroidal sulfatase inhibitors

&
Pages 123-137 | Received 06 Jul 2020, Accepted 06 Jul 2020, Published online: 24 Jul 2020
 

Abstract

Aromatase and steroidal sulfatase (STS) are steroidogenic enzyme that increases the concentration of estrogens in circulation, a primary factor leading to breast cancer. At molecular level, 87% of STS is expressed and an inhibitor targeting STS could decrease the level of estrogens. In an attempt to identify the chemical structural requirement targeting placental STS inhibition, 26 compounds with pIC50 ranging from 4.61 to 9.46 were subjected to computational studies including Quantitative Structural–Activity Relationship (QSAR), MolecularDocking followed by Density Functional Theory (DFT) studies. A robust and predictable model were developed with good R2 (0.834) and cross-validated correlation coefficient value Q2LOO (0.786) explaining the relationship quantitatively. The regression graphs suggests that the STS inhibition was greatly dependent on the electro topological state of an atom, sum of the atom type E-state (SdssC), maximum E-states for strong hydrogen bond acceptors (maxHBa) and basic group count descriptor (BCUTp-1h). Furthermore, docking results showed favorable interactions of sulfamate analogs with catalytically important amino acid residues such as LEU74, VAL101, and VAL486. The interactions of the best active compound 3j when compared with standard Irosustat show similar binding energies. DFT studies further confirm the presence of HOMO orbital centered on chromenone ring further highlighting its importance for receptor ligand hydrophobic interaction. The study reveals that substitution of thio in chromenone nucleus and introduction of adamantyl substitution at second position are favorable in inhibiting the enzyme STS.

Graphical Abstract

Acknowledgements

The authors thank the Research Council of SRMIST and The Dean, SRM College of Pharmacy for their valuable support. The authors also express their gratitude to Prof. Paolo Gramatica, University of Insurbia, Varese, Italy for providing access to QSARINS software.

Disclosure statement

The authors declare no conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.