160
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

α1-Adrenergic receptors increase glucose oxidation under normal and ischemic conditions in adult mouse cardiomyocytes

& ORCID Icon
Pages 138-144 | Received 11 Feb 2020, Accepted 15 Feb 2020, Published online: 05 Aug 2020
 

Abstract

The role of catecholamine receptors in cardiac energy metabolism is unknown. α1-adrenergic receptors (α1-ARs) have been identified to play a role in whole body metabolism but its role in cardiac energy metabolism has not been explored. We used freshly prepared primary adult mouse cardiomyocytes and incubated with either 14C-palmitate or 14C-glucose tracers to measure oxidation rates in the presence or absence of phenylephrine, an α1-AR agonist (with β and α2-AR blockers) under normal cell culture conditions. 14CO2 released was collected over a 10 min period in covered tissue culture plates using a 1 M hyamine hydroxide solution placed in well cups, counted by scintillation and converted into nmoles/hr. We found that phenylephrine stimulated glucose oxidation but not fatty acid oxidation in adult primary cardiomyocytes. α1-AR stimulated glucose oxidation was blocked by the AMPK inhibitor, dorsomorphin dihydrochloride, and the PKC inhibitor, rottlerin. Ischemic conditions were induced by lowering the glucose concentration from 22.5 mM to 1.375 mM. Under ischemic conditions, we found that phenylephrine also increased glucose oxidation. We report a direct role of α1-ARs in regulating glucose oxidation under normal and ischemic conditions that may lead to new therapeutic approaches in treating ischemia.

Acknowledgements

We thank Satish Kalhan, MD for his expertise and help in establishing the oxidation assays.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was funded through a grant by the American Heart Association [15GRNT24800004].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.