150
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Trimetazidine alleviates hypoxia/reoxygenation-induced apoptosis in neonatal mice cardiomyocytes via up-regulating HMGB1 expression to promote autophagy

, &
Pages 170-179 | Received 13 May 2020, Accepted 21 Jul 2020, Published online: 05 Aug 2020
 

Abstract

Previous studies demonstrated the effect of Trimetazidine (TMZ) on alleviating cardiomyocytes Hypoxia/Reoxygenation (H/R) injuries and the protective effect of autophagy on Ischemia-Reperfusion (I/R) cell injuries. However, whether the protection mechanism of TMZ was also involved in autophagy remained unclear. Our study introduces the role of HMGB1 to examine the regulation of TMZ on autophagy against cardiomyocytes H/R injuries. After cell extraction and identification through anti-α-actin staining, the cardiomyocytes were made hypoxic and reoxygenated, each for 3 h, and then treated with various concentrations of TMZ and transfected with siHMGB1. Cell viability and apoptosis were measured by the MTS method and flow cytometry, respectively. The expressions of autophagy-related factors (LC3-I, LC3-II, Beclin-1) and HMGB1 were detected by Western blot and qPCR. Lactate dehydrogenase (LDH) release was assessed by ELISA kit. The cardiomyocytes were extracted. H/R decreased the cell viability and increased the LDH level and apoptosis of cardiomyocytes. TMZ had no effect on untreated cardiomyocytes, but it reversed the adverse impact of H/R on cardiomyocytes. The expressions of LC3-II, Beclin-1, and HMGB1 and the ratio of LC3-II/LC3-I were increased in H/R-processed cardiomyocytes and further raised by TMZ pretreatment. However, siHMGB1 transfection aggravated the impact of H/R on cardiomyocytes and suppressed the protective effects of TMZ on H/R damaged cardiomyocytes by increasing the LDH level and apoptosis and reducing the viability of cardiomyocytes. Autophagy was inhibited by siHMGB1 in TMZ-pretreated and H/R-processed cardiomyocytes. TMZ protected cardiomyocytes against H/R injuries may through regulating HMGB1 to increase the impact of autophagy.

Ethical approval

All the animal experiments were performed in accordance with the guidelines of the China Council on Animal Care and Use. This study was approved by the Committee of Experimental Animals of The Second Affiliated Hospital of Guangxi Medical University. Pain and discomfort caused to the animals during the experiments have been minimized to the greatest extent. The animals’ experiments were performed at The Second Affiliated Hospital of Guangxi Medical University.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.