148
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Potential signaling pathway through which Notch regulates oxidative damage and apoptosis in renal tubular epithelial cells induced by high glucose

, , , , &
Pages 357-362 | Received 22 Jan 2020, Accepted 12 Aug 2020, Published online: 16 Sep 2020
 

Abstract

Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes mellitus, and glomerular sclerosis and renal tubular interstitial fibrosis are the main pathological features. Current evidence indicates that the Notch pathway can mediate the impairment of renal tubular function and induce angiogenesis and renal interstitial fibrosis. This study was conducted to explore the potential signaling pathway through which Notch regulates oxidative damage and apoptosis in renal tubular epithelial cells induced by high glucose. mRNA and protein expression levels were assessed using real-time PCR and Western blot, respectively. The protein expression levels of Jaggedl, Notchl, pro-caspase-3, Drpl, and PGC-1α were increased by high glucose, but N-[N-(3,5-difluorohenacetyl)-l-alanyl]-S-phenylglycine tert-butyl ester (DAPT; an inhibitor of the Notch signaling pathway) reversed these effects. Furthermore, DAPT reduced the mRNA expression of Jaggedl, Notchl, MnSOD2, Drpl, and PGC-1α in renal tubular epithelial cells induced by high glucose. In conclusion, the Notch signaling pathway may regulate oxidative damage and apoptosis in renal tubular epithelial cells induced by high glucose by regulating mitochondrial dynein and biogenesis genes, which can accelerate renal interstitial fibrosis in DN. The Notch signaling pathway might be a potential therapeutic target for DN, and DAPT might become a potential drug for the treatment of DN.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by National Natural Science Foundation of China [No. 81560124], Hainan Key Research and Development Projects [ZDYF2019126], Hainan Natural Science Foundation [819QN355 and 819QN349], and Development Fund Project of Hainan Medical College [HYPY201926].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.