160
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Identification of inhibitors targeting HIF-2α/c-Myc by molecular docking and MM-GBSA technology

ORCID Icon, , , , &
Pages 511-519 | Received 24 Aug 2020, Accepted 14 Sep 2020, Published online: 27 Sep 2020
 

Abstract

The treatment of ccRCC by targeting hypoxia-inducible factor HIF-2α is currently a direct and effective method. Studies have shown that HIF-2α and c-Myc cooperate to promote ccRCC tumor progression, and the overexpression of c-Myc is related to the progress and drug resistance of most human cancers. Although HIF-2α and c-Myc are important drug targets, their dual inhibitors are still lacking. We used virtual screening tools (mainly including molecular docking and MM-GBSA technology) to obtain some well-listed compounds that can potentially target HIF-2α and c-Myc and used molecular dynamics simulations to study their binding with these protein systems. Using a structure-based screening scheme, a batch of top-ranking compounds were selected, and their binding affinities were predicted of these compounds were performed. Representative compound C93106, C43257, and C41580 all showed good comprehensive binding score. Our results indicate that the target compounds can all form key interactions with the active site of the protein, and 30 ns molecular dynamic simulation of the complex system indicates a stable binding conformation. This research laid the foundation for the development of more effective and specific HIF-2α and c-Myc dual-target inhibitors.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The authors thanks to Natural Science Foundation of China [grant nos. 21272131] for financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.