150
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Ozone protects cardiomyocytes from myocardial ischemia–reperfusion injury through miR-200c/FOXO3 axis

, , , , , & show all
Pages 531-539 | Received 28 Dec 2021, Accepted 17 Mar 2022, Published online: 17 May 2022
 

Abstract

Purpose

Myocardial ischemia-reperfusion injury (I/R) is a detrimental process contributing to the pathological progression of coronary artery diseases. Studies indicate that miRNAs are implicated in ischemic heart disease, and ozone therapy could protect the heart from ischemic heart disease. In this study, we investigated the effect of ozone on miR-200c expression and the potential role of miR-200c in an I/R myocardial injury model.

Methods

A myocardial cellular model of I/R was established to detect the expression of miR-200c. Cardiomyocytes with I/R induction were treated with ozone as a cellular model to detect miR-200 expression and investigate its functional roles. The downstream target of miR-200c was predicted with Starbase online tools and validated by dual luciferase reporter assay. The function of miR-200c/FOXO3 axis in I/R was examined by CCK-8 proliferation and apoptotic assays.

Results

miR-200c was upregulated in primary cardiomyocytes of the I/R model. In cardiomyocyte cells, cell proliferation in the I/R group was significantly impaired, which could be partially rescued by miR-200c inhibitor or ozone treatment. Cell death detected by LDH release and apoptosis assay in the I/R model could also be inhibited by miR-200c inhibitor or ozone treatment. FOXO3 was identified as a downstream target of miR-200c, which was induced by ozone treatment and suppressed by miR-200c. Silencing FOXO3 abrogated the protective effect of ozone treatment on the I/R cell model.

Conclusion

Overall, our results suggest that ozone plays a cardio-protective role in I/R through regulating miR-200/FOXO3 axis, and indicate that targeting miR-200/FOXO3 axis could potentially alleviate I/R.

Ethics approval and consent to participate

The study was approved by the Ethics Committee Board of Jinan University.

Author contributions

L Zhang revised the manuscript and searched references, XP Men analyzed the data and modified the figures. HW Chen, Y Luo and SL Yu mainly participated in literature search and writing. SL Yu and HZ Guo mainly participated in data collection and data analysis. SH Mi supervised the revision process, edited the revision and drafted the response letter. All authors read and approved the final manuscript.

Disclosure statement

All the authors have no conflict of interest for this study.

Data availability statement

The data are available from the corresponding author on reasonable request.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.